115
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An in vitro study of different material properties of Biodentine compared to ProRoot MTA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The aim of this study was to compare solubility, microhardness, radiopacity, and setting time of Biodentine with ProRoot MTA.

          Methods

          Solubility in distilled water, radioopacity, and setting time were evaluated in accordance with International Standard ISO 6876:2001. In addition, the solubility in Phosphate Buffered Saline (PBS) buffer was determined. For microhardness-testing, ten samples of each cement were produced. All samples were loaded with a diamond indenter point with a weight of 100 g for 30s.

          All data were analysed using the Student- t-test.

          Results

          Both materials fulfilled the requirements of the International Standard ISO 6876:2001 and showed a solubility of <3% after 24 h. At all exposure times Biodentine was significantly more soluble than ProRoot MTA (p < 0.0001). After immersion in PBS-buffer a precipitation of hydroxyapatite was visible.

          The Vickers microhardness for Biodentine was significantly higher (62.35 ± 11.55HV) compared with ProRoot MTA (26.93 ± 4.66HV) (p < 0.0001).

          ProRoot MTA was significantly more radiopaque (6.40 ± 0.06 mm Al) than Biodentine (1.50 ± 0.10 mm Al) (p < 0.0001).

          The setting time for Biodentine (85.66 ± 6.03 min) was significantly lower than for ProRoot MTA (228.33 ± 2.88 min) (p < 0.0001).

          Conclusions

          Biodentine and ProRoot MTA displayed different material properties. The solubility of both cements was in accordance with the International Standard ISO 6876:2001, whereas ProRoot MTA showed a significantly lower solubility. With regard to microhardness, Biodentine may be used to replace dentine. The radioopacity of Biodentine did not fulfil the requirements laid down in the International Standard ISO 6876:2001. The setting time for ProRoot MTA is significantly higher. Both materials can be used in different indications where specific material properties may be favourable. Hence, the here tested material properties are of clinical relevance.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Mineral trioxide aggregate: a comprehensive literature review--Part III: Clinical applications, drawbacks, and mechanism of action.

          Mineral trioxide aggregate (MTA) has been recommended for various uses in endodontics. Two previous publications provided a comprehensive list of articles from November 1993-September 2009 regarding the chemical and physical properties, sealing ability, antibacterial activity, leakage, and biocompatibility of MTA. The purpose of Part III of this literature review is to present a comprehensive list of articles regarding animal studies, clinical applications, drawbacks, and mechanism of action of MTA. A review of the literature was performed by using electronic and hand-searching methods for the clinical applications of MTA in experimental animals and humans as well as its drawbacks and mechanism of action from November 1993-September 2009. MTA is a promising material for root-end filling, perforation repair, vital pulp therapy, and apical barrier formation for teeth with necrotic pulps and open apexes. Despite the presence of numerous case reports and case series regarding these applications, there are few designed research studies regarding clinical applications of this material. MTA has some known drawbacks such as a long setting time, high cost, and potential of discoloration. Hydroxyapatite crystals form over MTA when it comes in contact with tissue synthetic fluid. This can act as a nidus for the formation of calcified structures after the use of this material in endodontic treatments. On the basis of available information, it appears that MTA is the material of choice for some clinical applications. More clinical studies are needed to confirm its efficacy compared with other materials. Copyright (c) 2010. Published by Elsevier Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations.

            Mineral trioxide aggregate (MTA) was developed because existing materials did not have the ideal characteristics for orthograde or retrograde root-end fillings. MTA has been recommended primarily as a root-end filling material, but it has also been used in pulp capping, pulpotomy, apical barrier formation in teeth with open apexes, repair of root perforations, and root canal filling. Part I of this literature review presented a comprehensive list of articles regarding the chemical and physical properties as well as the antibacterial activity of MTA. The purpose of part II of this review is to present a comprehensive list of articles regarding the sealing ability and biocompatibility of this material. A review of the literature was performed by using electronic and hand-searching methods for the sealing ability and biocompatibility of MTA from November 1993-September 2009. Numerous studies have investigated the sealing ability and biocompatibility of MTA. On the basis of available evidence it appears that MTA seals well and is a biocompatible material. Copyright 2010. Published by Elsevier Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physicochemical basis of the biologic properties of mineral trioxide aggregate.

              This study characterized the interactions of mineral trioxide aggregate with a synthetic tissue fluid composed of a neutral phosphate buffer saline solution and root canal dentin in extracted human teeth using inductively coupled plasma-atomic emission spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction. Mineral trioxide aggregate exposed to synthetic tissue fluid at 37 degrees C released its metallic constituents and produced precipitates with a composition and structure similar to that of hydroxyapatite [Ca10(PO4)6(OH)2-HA]. Endodontically prepared teeth filled with mineral trioxide aggregate and stored in synthetic tissue fluid at 37 degrees C for 2 months produced at the dentin wall an adherent interfacial layer that resembled hydroxyapatite in composition. The authors conclude that Ca, the dominant ion released from mineral trioxide aggregate, reacts with phosphates in synthetic tissue fluid, yielding hydroxyapatite. The dentin-mineral trioxide aggregate interfacial layer results from a similar reaction. The sealing ability, biocompatibility, and dentinogenic activity of mineral trioxide aggregate is attributed to these physicochemical reactions.
                Bookmark

                Author and article information

                Contributors
                drkaup@drkaup.de
                eschaef@uni-muenster.de
                tillda@uni-muenster.de
                Journal
                Head Face Med
                Head Face Med
                Head & Face Medicine
                BioMed Central (London )
                1746-160X
                2 May 2015
                2 May 2015
                2015
                : 11
                : 16
                Affiliations
                [ ]Department of Operative Dentistry, Westphalian Wilhelms-University, Albert-Schweitzer-Campus 1, building W 30, 48149 Münster, Germany
                [ ]Central Interdisciplinary Ambulance in the School of Dentistry, Albert-Schweitzer-Campus 1, building W 30, 48149 Münster, Germany
                Article
                74
                10.1186/s13005-015-0074-9
                4424823
                25934270
                b6db69fb-f116-4981-affc-c76ac388a1aa
                © Kaup et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 February 2015
                : 24 April 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Orthopedics
                biodentine,radiopacity,setting time,solubility,vickers microhardness
                Orthopedics
                biodentine, radiopacity, setting time, solubility, vickers microhardness

                Comments

                Comment on this article