61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unguided Species Delimitation Using DNA Sequence Data from Multiple Loci

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A method was developed for simultaneous Bayesian inference of species delimitation and species phylogeny using the multispecies coalescent model. The method eliminates the need for a user-specified guide tree in species delimitation and incorporates phylogenetic uncertainty in a Bayesian framework. The nearest-neighbor interchange algorithm was adapted to propose changes to the species tree, with the gene trees for multiple loci altered in the proposal to avoid conflicts with the newly proposed species tree. We also modify our previous scheme for specifying priors for species delimitation models to construct joint priors for models of species delimitation and species phylogeny. As in our earlier method, the modified algorithm integrates over gene trees, taking account of the uncertainty of gene tree topology and branch lengths given the sequence data. We conducted a simulation study to examine the statistical properties of the method using six populations (two sequences each) and a true number of three species, with values of divergence times and ancestral population sizes that are realistic for recently diverged species. The results suggest that the method tends to be conservative with high posterior probabilities being a confident indicator of species status. Simulation results also indicate that the power of the method to delimit species increases with an increase of the divergence times in the species tree, and with an increased number of gene loci. Reanalyses of two data sets of cavefish and coast horned lizards suggest considerable phylogenetic uncertainty even though the data are informative about species delimitation. We discuss the impact of the prior on models of species delimitation and species phylogeny and of the prior on population size parameters ( θ) on Bayesian species delimitation.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Bayesian species delimitation using multilocus sequence data.

          In the absence of recent admixture between species, bipartitions of individuals in gene trees that are shared across loci can potentially be used to infer the presence of two or more species. This approach to species delimitation via molecular sequence data has been constrained by the fact that genealogies for individual loci are often poorly resolved and that ancestral lineage sorting, hybridization, and other population genetic processes can lead to discordant gene trees. Here we use a Bayesian modeling approach to generate the posterior probabilities of species assignments taking account of uncertainties due to unknown gene trees and the ancestral coalescent process. For tractability, we rely on a user-specified guide tree to avoid integrating over all possible species delimitations. The statistical performance of the method is examined using simulations, and the method is illustrated by analyzing sequence data from rotifers, fence lizards, and human populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci.

            The effective population sizes of ancestral as well as modern species are important parameters in models of population genetics and human evolution. The commonly used method for estimating ancestral population sizes, based on counting mismatches between the species tree and the inferred gene trees, is highly biased as it ignores uncertainties in gene tree reconstruction. In this article, we develop a Bayes method for simultaneous estimation of the species divergence times and current and ancestral population sizes. The method uses DNA sequence data from multiple loci and extracts information about conflicts among gene tree topologies and coalescent times to estimate ancestral population sizes. The topology of the species tree is assumed known. A Markov chain Monte Carlo algorithm is implemented to integrate over uncertain gene trees and branch lengths (or coalescence times) at each locus as well as species divergence times. The method can handle any species tree and allows different numbers of sequences at different loci. We apply the method to published noncoding DNA sequences from the human and the great apes. There are strong correlations between posterior estimates of speciation times and ancestral population sizes. With the use of an informative prior for the human-chimpanzee divergence date, the population size of the common ancestor of the two species is estimated to be approximately 20,000, with a 95% credibility interval (8000, 40,000). Our estimates, however, are affected by model assumptions as well as data quality. We suggest that reliable estimates have yet to await more data and more realistic models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence-based species delimitation for the DNA taxonomy of undescribed insects.

              Cataloging the very large number of undescribed species of insects could be greatly accelerated by automated DNA based approaches, but procedures for large-scale species discovery from sequence data are currently lacking. Here, we use mitochondrial DNA variation to delimit species in a poorly known beetle radiation in the genus Rivacindela from arid Australia. Among 468 individuals sampled from 65 sites and multiple morphologically distinguishable types, sequence variation in three mtDNA genes (cytochrome oxidase subunit 1, cytochrome b, 16S ribosomal RNA) was strongly partitioned between 46 or 47 putative species identified with quantitative methods of species recognition based on fixed unique ("diagnostic") characters. The boundaries between groups were also recognizable from a striking increase in branching rate in clock-constrained calibrated trees. Models of stochastic lineage growth (Yule models) were combined with coalescence theory to develop a new likelihood method that determines the point of transition from species-level (speciation and extinction) to population-level (coalescence) evolutionary processes. Fitting the location of the switches from speciation to coalescent nodes on the ultrametric tree of Rivacindela produced a transition in branching rate occurring at 0.43 Mya, leading to an estimate of 48 putative species (confidence interval for the threshold ranging from 47 to 51 clusters within 2 logL units). Entities delimited in this way exhibited biological properties of traditionally defined species, showing coherence of geographic ranges, broad congruence with morphologically recognized species, and levels of sequence divergence typical for closely related species of insects. The finding of discontinuous evolutionary groupings that are readily apparent in patterns of sequence variation permits largely automated species delineation from DNA surveys of local communities as a scaffold for taxonomy in this poorly known insect group.
                Bookmark

                Author and article information

                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                molbiolevol
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                December 2014
                01 October 2014
                01 October 2014
                : 31
                : 12
                : 3125-3135
                Affiliations
                1Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
                2Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
                3Department of Evolution & Ecology, University of California, Davis
                Author notes
                *Corresponding author: E-mail: brannala@ 123456ucdavis.edu .

                Associate editor: Yoko Satta

                Article
                msu279
                10.1093/molbev/msu279
                4245825
                25274273
                b6db6eb9-9c11-41e8-a18f-1996c0c6e87f
                © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 11
                Categories
                Fast Track

                Molecular biology
                bayesian species delimitation,species tree,multispecies coalescent,reversible-jump mcmc,guide tree,nearest-neighbor interchange

                Comments

                Comment on this article