60
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Neuro-Immune-Endocrine Facet in Infectious Disease Pathophysiology

      Submit here by October 30, 2025

      About Neuroimmunomodulation: 2.2 Impact Factor I 3.6 CiteScore I 0.6 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kisspeptin Restores Pulsatile LH Secretion in Patients with Neurokinin B Signaling Deficiencies: Physiological, Pathophysiological and Therapeutic Implications

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pulsatile gonadotropin-releasing hormone (GnRH) is crucial to normal reproductive function and abnormalities in pulse frequency give rise to reproductive dysfunction. Kisspeptin and neurokinin B (NKB), neuropeptides secreted by the same neuronal population in the ventral hypothalamus, have emerged recently as critical central regulators of GnRH and thus gonadotropin secretion. Patients with mutations resulting in loss of signaling by either of these neuroendocrine peptides fail to advance through puberty but the mechanisms mediating this remain unresolved. We report here that continuous kisspeptin infusion restores gonadotropin pulsatility in patients with loss-of-function mutations in NKB ( TAC3) or its receptor ( TAC3R), indicating that kisspeptin on its own is sufficient to stimulate pulsatile GnRH secretion. Moreover, our findings suggest that NKB action is proximal to kisspeptin in the reproductive neuroendocrine cascade regulating GnRH secretion, and may act as an autocrine modulator of kisspeptin secretion. The ability of continuous kisspeptin infusion to induce pulsatile gonadotropin secretion further indicates that GnRH neurons are able to set up pulsatile secretion in the absence of pulsatile exogenous kisspeptin.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.

          We have recently described a molecular gatekeeper of the hypothalamic-pituitary-gonadal axis with the observation that G protein-coupled receptor 54 (GPR54) is required in mice and men for the pubertal onset of pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion to occur. In the present study, we investigate the possible central mode of action of GPR54 and kisspeptin ligand. First, we show that GPR54 transcripts are colocalized with gonadotropin-releasing hormone (GnRH) neurons in the mouse hypothalamus, suggesting that kisspeptin, the GPR54 ligand, may act directly on these neurons. Next, we show that GnRH neurons seem anatomically normal in gpr54-/- mice, and that they show projections to the median eminence, which demonstrates that the hypogonadism in gpr54-/- mice is not due to an abnormal migration of GnRH neurons (as occurs with KAL1 mutations), but that it is more likely due to a lack of GnRH release or absence of GnRH neuron stimulation. We also show that levels of kisspeptin injected i.p., which stimulate robust LH and FSH release in wild-type mice, have no effect in gpr54-/- mice, and therefore that kisspeptin acts directly and uniquely by means of GPR54 signaling for this function. Finally, we demonstrate by direct measurement, that the central administration of kisspeptin intracerebroventricularly in sheep produces a dramatic release of GnRH into the cerebrospinal fluid, with a parallel rise in serum LH, demonstrating that a key action of kisspeptin on the hypothalamo-pituitary-gonadal axis occurs directly at the level of GnRH release. The localization and GnRH release effects of kisspeptin thus define GPR54 as a major control point in the reproductive axis and suggest kisspeptin to be a neurohormonal effector.
            • Record: found
            • Abstract: found
            • Article: not found

            TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction.

            The timely secretion of gonadal sex steroids is essential for the initiation of puberty, the postpubertal maintenance of secondary sexual characteristics and the normal perinatal development of male external genitalia. Normal gonadal steroid production requires the actions of the pituitary-derived gonadotropins, luteinizing hormone and follicle-stimulating hormone. We report four human pedigrees with severe congenital gonadotropin deficiency and pubertal failure in which all affected individuals are homozygous for loss-of-function mutations in TAC3 (encoding Neurokinin B) or its receptor TACR3 (encoding NK3R). Neurokinin B, a member of the substance P-related tachykinin family, is known to be highly expressed in hypothalamic neurons that also express kisspeptin, a recently identified regulator of gonadotropin-releasing hormone secretion. These findings implicate Neurokinin B as a critical central regulator of human gonadal function and suggest new approaches to the pharmacological control of human reproduction and sex hormone-related diseases.
              • Record: found
              • Abstract: found
              • Article: not found

              Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion.

              Recently, a subset of neurons was identified in the arcuate nucleus of the hypothalamus that colocalize three neuropeptides, kisspeptin, neurokinin B, and dynorphin, each of which has been shown to play a critical role in the central control of reproduction. Growing evidence suggests that these neurons, abbreviated as the KNDy subpopulation, are strongly conserved across a range of species from rodents to humans and play a key role in the physiological regulation of GnRH neurons. KNDy cells are a major target for steroid hormones, form a reciprocally interconnected network, and have direct projections to GnRH cell bodies and terminals, features that position them well to convey steroid feedback control to GnRH neurons and potentially serve as a component of the GnRH pulse generator. In addition, recent work suggests that alterations in KNDy cell peptides may underlie neuroendocrine defects seen in clinical reproductive disorders such as polycystic ovarian syndrome. Taken together, this evidence suggests a key role for the KNDy subpopulation as a focal point in the control of reproductive function in health and disease.

                Author and article information

                Journal
                Neuroendocrinology
                Neuroendocrinology
                NEN
                Neuroendocrinology
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.ch )
                0028-3835
                1423-0194
                March 2013
                24 February 2012
                24 February 2012
                : 97
                : 2
                : 193-202
                Affiliations
                [1] aFaculté de Médecine Paris-Sud UMR-S693, Université Paris-Sud, France
                [2] bINSERM U693, IFR93, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
                [3] cService d'Endocrinologie et des Maladies de la Reproduction, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
                [4] dService de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
                [5] eMRC Human Reproductive Sciences Unit, University of Edinburgh, Edinburgh, UK
                [6] fCentre for Integrative Physiology, University of Edinburgh, School of Biomedical Sciences, Edinburgh, UK
                [7] gMammal Research Institute, University of Pretoria, Pretoria, and UCT/MRC Receptor Biology Unit, University of Cape Town, Cape Town, South Africa
                Author notes
                *Robert P. Millar, Mammal Research Institute, University of Pretoria, Pretoria 0028 (South Africa), Tel. +27 420 3776, E-Mail robertpetermillar@ 123456gmail.com
                Article
                nen-0097-0193
                10.1159/000336376
                3902960
                22377698
                b6e1113a-4163-448e-aed3-f4a03f7a1df3
                Copyright © 2013 by S. Karger AG, Basel

                This is an Open Access article licensed under the terms of the Creative Commons Attribution 3.0 Unported license (CC BY 3.0) (www.karger.com/OA-license-WT), applicable to the online version of the article only. Users may download, print and share this work on the Internet, provided the original work is properly cited, and a link to the original work on http://www.karger.com and the terms of this license are included in any shared versions.

                History
                : 4 October 2011
                : 5 January 2012
                Page count
                Figures: 3, Tables: 1, References: 59, Pages: 10
                Categories
                Rapid Communication

                Endocrinology & Diabetes
                deficient nkb signaling,gnrh pulse generation,kisspeptin,kisspeptin-10 infusion,neurokinin b signaling deficiency,pulsatile lh secretion,hypogonadotropic hypogonadism


                Comments

                Comment on this article

                Related Documents Log