5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Translocation pathway in the catalysis of active transport.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Possible pathways for translocation across the membrane in active transport processes are examined theoretically. Thermodynamic and kinetic requirements are readily satisfied by an alternating-access mechanism of the kind that has been proposed in the past by several investigators. The essential features of this mechanism (for transport of a single species) are shown to be defined by four explicit conditions. (i) The transport protein must have at least two distinct conformational states, each accessible from only one side of the membrane. (ii) Binding affinity for the transported species is high in the state accessible from the uptake side of the membrane and much lower in the state accessible from the discharge side. (iii) The change from one conformation to the other involves movement of the binding site itself (with the transported species remaining attached) or rearrangement within the site that is topologically equivalent to such movement. (iv) Return to the original conformation occurs with unoccupied binding sites. The analysis demonstrates that a passage through the membrane that is simultaneously accessible from both sides cannot be used for active transport regardless of what the energetics of opening or closing of the passage may be. Even movement from one fixed site to another within the protein, without access to the outside, is virtually excluded as a possible element of the central mechanism. A ligand conduction mechanism for ATP-linked ion transport is in principle conceivable but is subject to restrictions that make it improbable.

          Related collections

          Author and article information

          Journal
          Proc Natl Acad Sci U S A
          Proceedings of the National Academy of Sciences of the United States of America
          Proceedings of the National Academy of Sciences
          0027-8424
          0027-8424
          Jun 1983
          : 80
          : 12
          Article
          10.1073/pnas.80.12.3701
          394118
          6574508
          b6fc1895-7dc5-4331-9d59-0722702b53d6
          History

          Comments

          Comment on this article