5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cost-Benefit Analysis of Green Infrastructures on Community Stormwater Reduction and Utilization: A Case of Beijing, China

      , , , ,
      Environmental Management
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Application of multicriteria decision analysis in environmental decision making.

          Decision making in environmental projects can be complex and seemingly intractable, principally because of the inherent trade-offs between sociopolitical, environmental, ecological, and economic factors. The selection of appropriate remedial and abatement strategies for contaminated sites, land use planning, and regulatory processes often involves multiple additional criteria such as the distribution of costs and benefits, environmental impacts for different populations, safety, ecological risk, or human values. Some of these criteria cannot be easily condensed into a monetary value, partly because environmental concerns often involve ethical and moral principles that may not be related to any economic use or value. Furthermore, even if it were possible to aggregate multiple criteria rankings into a common unit, this approach would not always be desirable because the ability to track conflicting stakeholder preferences may be lost in the process. Consequently, selecting from among many different alternatives often involves making trade-offs that fail to satisfy 1 or more stakeholder groups. Nevertheless, considerable research in the area of multicriteria decision analysis (MCDA) has made available practical methods for applying scientific decision theoretical approaches to complex multicriteria problems. This paper presents a review of the available literature and provides recommendations for applying MCDA techniques in environmental projects. A generalized framework for decision analysis is proposed to highlight the fundamental ingredients for more structured and tractable environmental decision making.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Life-cycle cost-benefit analysis of extensive vegetated roof systems.

            The built environment has been a significant cause of environmental degradation in the previously undeveloped landscape. As public and private interest in restoring the environmental integrity of urban areas continues to increase, new construction practices are being developed that explicitly value beneficial environmental characteristics. The use of vegetation on a rooftop--commonly called a green roof--as an alternative to traditional roofing materials is an increasingly utilized example of such practices. The vegetation and growing media perform a number of functions that improve environmental performance, including: absorption of rainfall, reduction of roof temperatures, improvement in ambient air quality, and provision of urban habitat. A better accounting of the green roof's total costs and benefits to society and to the private sector will aid in the design of policy instruments and educational materials that affect individual decisions about green roof construction. This study uses data collected from an experimental green roof plot to develop a benefit cost analysis (BCA) for the life cycle of extensive (thin layer) green roof systems in an urban watershed. The results from this analysis are compared with a traditional roofing scenario. The net present value (NPV) of this type of green roof currently ranges from 10% to 14% more expensive than its conventional counterpart. A reduction of 20% in green roof construction cost would make the social NPV of the practice less than traditional roof NPV. Considering the positive social benefits and relatively novel nature of the practice, incentives encouraging the use of this practice in highly urbanized watersheds are strongly recommended.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Green roof valuation: a probabilistic economic analysis of environmental benefits.

              Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.
                Bookmark

                Author and article information

                Journal
                Environmental Management
                Environmental Management
                Springer Nature
                0364-152X
                1432-1009
                December 2016
                September 2016
                : 58
                : 6
                : 1015-1026
                Article
                10.1007/s00267-016-0765-4
                27605224
                b6fc1b3d-575f-4342-aa59-64213acdf15d
                © 2016
                History

                Comments

                Comment on this article