162
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Relationship between Anti-merozoite Antibodies and Incidence of Plasmodium falciparum Malaria: A Systematic Review and Meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A systematic review and meta-analysis examining the association between anti-merozoite antibody responses and incidence of Plasmodium falciparum malaria by Freya Fowkes and colleagues aids identification of antigens that confer protection from malaria.

          Abstract

          Background

          One of the criteria to objectively prioritize merozoite antigens for malaria vaccine development is the demonstration that naturally acquired antibodies are associated with protection from malaria. However, published evidence of the protective effect of these antibodies is conflicting.

          Methods and Findings

          We performed a systematic review with meta-analysis of prospective cohort studies examining the association between anti-merozoite immunoglobin (Ig) G responses and incidence of Plasmodium falciparum malaria. Two independent researchers searched six databases and identified 33 studies that met predefined inclusion and quality criteria, including a rigorous definition of symptomatic malaria. We found that only five studies were performed outside sub-Saharan Africa and that there was a deficiency in studies investigating antibodies to leading vaccine candidates merozoite surface protein (MSP)-1 42 and erythrocyte binding antigen (EBA)-175. Meta-analyses of most-studied antigens were conducted to obtain summary estimates of the association between antibodies and incidence of P. falciparum malaria. The largest effect was observed with IgG to MSP-3 C terminus and MSP-1 19 (responders versus nonresponders, 54%, 95% confidence interval [CI] [33%–68%] and 18% [4%–30%] relative reduction in risk, respectively) and there was evidence of a dose-response relationship. A tendency towards protective risk ratios (RR<1) was also observed for individual study estimates for apical membrane antigen (AMA)-1 and glutamate-rich protein (GLURP)-R0. Pooled estimates showed limited evidence of a protective effect for antibodies to MSP-1 N-terminal regions or MSP-1-EGF (epidermal growth factor-like modules). There was no significant evidence for the protective effect for MSP-2 (responders versus nonresponders pooled RR, MSP-2 FC27 0.82, 95% CI 0.62–1.08, p = 0.16 and MSP-2 3D7 0.92, 95% CI 0.75–1.13, p = 0.43). Heterogeneity, in terms of clinical and methodological diversity between studies, was an important issue in the meta-analysis of IgG responses to merozoite antigens.

          Conclusions

          These findings are valuable for advancing vaccine development by providing evidence supporting merozoite antigens as targets of protective immunity in humans, and to help identify antigens that confer protection from malaria. Further prospective cohort studies that include a larger number of lead antigens and populations outside Africa are greatly needed to ensure generalizability of results. The reporting of results needs to be standardized to maximize comparability of studies. We therefore propose a set of guidelines to facilitate the uniform reporting of malaria immuno-epidemiology observational studies.

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          Plasmodium falciparum malaria, a mosquito-borne parasitic infection, kills about one million people every year. Around a week after an infected mosquito has bitten a person, “merozoites” (one of the life-stages of the parasite) infect the person's red blood cells where they replicate and then burst out and infect more red blood cells. Rapid replication of parasites can occur in the bloodstream, leading to massive numbers of parasites that can damage vital organs. Although individuals can lower their risk of becoming infected with malaria parasites by avoiding mosquito bites, a vaccine is urgently needed to reduce the global burden of malaria. When malaria parasites infect a person for the first time, the human immune system begins to produce antibodies, proteins that recognize molecules (antigens) on the parasite's surface and that act directly or cooperate with other parts of the immune system to kill malaria parasites. The production of these “naturally acquired” antibodies is initially slow so the individual can become ill when infected. However, because the immune system “remembers” how to make the antibodies, its response to subsequent infections is quicker. The levels of these antibodies also build up with each infection and become more effective at killing parasites. Vaccines, which contain malaria antigens, “prime” the immune system to respond rapidly to malaria infections and produce high concentrations of antibodies to prevent the infection from causing serious illness.

          Why Was This Study Done?

          A malaria vaccine that stimulates an efficient immune response against merozoites would limit the severity of malarial infections and prevent many deaths but no one knows which (if any) of the antigens on merozoites stimulate a protective immune response. Although many different types of antibodies are produced by the immune system, only some of these are effective in protecting against malaria. By investigating whether there is an association between naturally acquired antibodies, which recognize specific candidate antigens, and protection from malaria in populations living in areas where malaria is endemic (always present), vaccine developers can get an idea about which antigens to include in their vaccines. Although many of these “malaria immuno-epidemiological studies” have been undertaken, their results are somewhat conflicting. In this study, the researchers reanalyze these results by doing a systematic review (a study that uses predefined criteria to identify all the research on a specific topic) and a meta-analysis (a statistical method for combining the results of several studies). The researchers evaluated studies of the relationship between anti-merozoite antibodies and the incidence (the number of new cases of a disease in a population per year) of P. falciparum malaria in naturally exposed populations in different regions of the world.

          What Did the Researchers Do and Find?

          The researchers' search of the published literature yielded 33 studies in which the incidence of malaria had been recorded over time in groups of people in whom levels of antibodies to specific merozoite antigens had been measured. These studies measured antibodies at the start of the study and examined the subsequent risk of malaria over several months of follow-up (these are known as prospective cohort studies). All but five of the studies were performed in Africa, and very few merozoite antigens had been well-studied in different populations, or studied at all. Of note, very few studies had examined naturally acquired antibodies to some leading vaccine candidates (for example, only one study considered antibodies to MSP-1 42, a leading vaccine candidate). Conversely, the association between malaria incidence and antibodies to the antigen MSP-1 19, which has been included in only one candidate vaccine, was frequently studied. In their meta-analyses, the researchers found that among people with antibodies to the merozoite antigens MSP-3 (C-terminal region) and MSP-1 19, the risk of developing P. falciparum malaria was reduced by 54% and 18%, respectively, compared to people without antibodies to these antigens. There was also some evidence of a reduced risk of malaria for people with antibodies to AMA1 and GLURP. For other merozoite antigens, MSP1 (N-terminal region) and MSP2, there was either weak or no evidence for a protective effect of naturally acquired antibodies.

          What Do These Findings Mean?

          These findings suggest that merozoite antigens are important targets of protective immunity in people who are naturally exposed to malaria and also suggest which of these antigens might be included in vaccines. However, the findings are limited by the small number of studies identified by the researchers and additional prospective cohort studies are clearly needed to guide vaccine development. These studies will need to include a larger number of lead antigens and populations outside Africa to ensure their generalizability, note the researchers. Furthermore, efforts will need to be made to ensure greater consistency between studies to improve the ability to compare results between different studies, which was a challenge in performing this study. To this end, the researchers propose a set of guidelines that, if followed, should make it easier to compare the results of different malaria immune-epidemiology studies in the future and thus lead to better identification of candidate vaccine antigens.

          Additional Information

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000218.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          Gamma-globulin and acquired immunity to human malaria.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria.

              The protective effect of African IgG antibodies against Plasmodium falciparum malaria was investigated by passive transfer in Thai patients. Sera from 333 African adults were collected in the Cote d'Ivoire and subjected to extensive screening. One hundred fifty-three samples were discarded for safety reasons, and IgG was extracted from those remaining under conditions allowing their use by the intravenous (iv) route. Eight Thai patients with P. falciparum parasitemia were treated by iv inoculation of the IgG: six with a 100 mg/kg dose given over three days, one with a single 20 mg/kg dose, and one with a single 200 mg/kg dose. To ensure a safety margin of at least 48 hours, subjects were chosen among patients having a recrudescent parasitemia following quinine treatment failure at the RI level. At that stage, symptoms were mild or absent and parasitemia was low but increasing (range 4, 200-9,000/microliters). The IgG pool exerted a profound, stage-specific, but non-sterilizing effect on each of the strains tested, and proved to be safe. Asexual parasitemia decreased by a mean 728-fold (range 46-1,086), while gametocytes were unaffected. Clearance of parasites and symptoms was as fast or faster than with drugs, and was consistent in the eight patients treated, suggesting that target antigens were equally expressed in geographically remote isolates. In peripheral blood smears, no mature forms were seen at any time during the followup, which does not support the hypothesis that reversal of cytoadherence occurred. After the disappearance of the transferred antibodies, recrudescent parasites from three patients were found to be susceptible to the same extent (mean decrease of 1,310-fold) to the same IgG preparation, indicating that selection of parasites able to escape the effect of antibodies had not occurred. No adverse side-effects were detected during the followup, which lasted one year.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                January 2010
                January 2010
                19 January 2010
                : 7
                : 1
                : e1000218
                Affiliations
                [1 ]Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
                [2 ]Department of Medical Biology, University of Melbourne, Victoria, Australia
                [3 ]Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Victoria, Australia
                University of Oxford, United Kingdom
                Author notes

                ICMJE criteria for authorship read and met: FJF JR JAS JGB. Agree with the manuscript's results and conclusions: FJF JR JAS JGB. Designed the experiments/the study: FJF JAS JGB. Analyzed the data: FJF JR JGB. Collected data/did experiments for the study: FJF JR JGB. Wrote the first draft of the paper: FJF JGB. Contributed to the writing of the paper: FJF JR JAS JGB.

                Article
                09-PLME-RA-2200R2
                10.1371/journal.pmed.1000218
                2808214
                20098724
                b700626d-2020-49db-bf19-1ce57c214c5e
                Fowkes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 August 2009
                : 11 December 2009
                Page count
                Pages: 20
                Categories
                Research Article
                Immunology/Immunity to Infections
                Infectious Diseases/Epidemiology and Control of Infectious Diseases
                Infectious Diseases/Protozoal Infections

                Medicine
                Medicine

                Comments

                Comment on this article