3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Carcinogen Cadmium Activates Lysine 63 (K63)-Linked Ubiquitin-Dependent Signaling and Inhibits Selective Autophagy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Environmental exposure to cadmium (Cd) is associated with cancer. Cadmium was classified in 1993 by the International Agency for Research on Cancer as a carcinogen. However, as no biological process requires Cd, the molecular mechanisms of its carcinogenicity remain an enigma. This study is the first, to our knowledge, to show that Cd exposure has an impact on K63 ubiquitination, selective autophagy, and signaling pathways of lung and kidney epithelial cells, three crucial drivers of cancer initiation and progression. Further clarification of these issues will provide valuable insight into prognostic biomarkers and/or therapeutic targets for cancer.

          Abstract

          Signaling, proliferation, and inflammation are dependent on K63-linked ubiquitination—conjugation of a chain of ubiquitin molecules linked via lysine 63. However, very little information is currently available about how K63-linked ubiquitination is subverted in cancer. The present study provides, for the first time, evidence that cadmium (Cd), a widespread environmental carcinogen, is a potent activator of K63-linked ubiquitination, independently of oxidative damage, activation of ubiquitin ligase, or proteasome impairment. We show that Cd induces the formation of protein aggregates that sequester and inactivate cylindromatosis (CYLD) and selective autophagy, two tumor suppressors that deubiquitinate and degrade K63-ubiquitinated proteins, respectively. The aggregates are constituted of substrates of selective autophagy—SQSTM1, K63-ubiquitinated proteins, and mitochondria. These protein aggregates also cluster double-membrane remnants, which suggests an impairment in autophagosome maturation. However, failure to eliminate these selective cargos is not due to alterations in the general autophagy process, as degradation of long-lived proteins occurs normally. We propose that the simultaneous disruption of CYLD and selective autophagy by Cd feeds a vicious cycle that further amplifies K63-linked ubiquitination and downstream activation of the NF-κB pathway, processes that support cancer progression. These novel findings link together impairment of selective autophagy, K63-linked ubiquitination, and carcinogenesis.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Biological Functions of Autophagy Genes: A Disease Perspective

          The lysosomal degradation pathway of autophagy plays a fundamental role in cellular, tissue, and organismal homeostasis and is mediated by evolutionarily conserved autophagy-related (ATG) genes. Definitive etiological links exist between mutations in genes that control autophagy and human disease, especially neurodegenerative, inflammatory disorders and cancer. Autophagy selectively targets dysfunctional organelles, intracellular microbes, and pathogenic proteins, and deficiencies in these processes may lead to disease. Moreover, ATG genes have diverse physiologically important roles in other membrane-trafficking and signaling pathways. This Review discusses the biological functions of autophagy genes from the perspective of understanding-and potentially reversing-the pathophysiology of human disease and aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor.

            The biochemical properties of beclin 1 suggest a role in two fundamentally important cell biological pathways: autophagy and apoptosis. We show here that beclin 1-/- mutant mice die early in embryogenesis and beclin 1+/- mutant mice suffer from a high incidence of spontaneous tumors. These tumors continue to express wild-type beclin 1 mRNA and protein, establishing that beclin 1 is a haploinsufficient tumor suppressor gene. Beclin 1-/- embryonic stem cells have a severely altered autophagic response, whereas their apoptotic response to serum withdrawal or UV light is normal. These results demonstrate that beclin 1 is a critical component of mammalian autophagy and establish a role for autophagy in tumor suppression. They both provide a biological explanation for recent evidence implicating beclin 1 in human cancer and suggest that mutations in other genes operating in this pathway may contribute to tumor formation through deregulation of autophagy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis

              Reactive oxygen species- (ROS-) induced lipid peroxidation plays a critical role in cell death including apoptosis, autophagy, and ferroptosis. This fundamental and conserved mechanism is based on an excess of ROS which attacks biomembranes, propagates lipid peroxidation chain reactions, and subsequently induces different types of cell death. A highly evolved sophisticated antioxidant system exists that acts to protect the cells from oxidative damage. In this review, we discussed how ROS propagate lipid peroxidation chain reactions and how the products of lipid peroxidation initiate apoptosis and autophagy in current models. We also discussed the mechanism of lipid peroxidation during ferroptosis, and we summarized lipid peroxidation in pathological conditions of critical illness. We aim to bring a more global and integrative sight to know how different ROS-induced lipid peroxidation occurs among apoptosis, autophagy, and ferroptosis.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                20 May 2021
                May 2021
                : 13
                : 10
                : 2490
                Affiliations
                [1 ]Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; cherguiman@ 123456yahoo.fr (A.C.); abelaid@ 123456bu.edu (A.B.); papadiogop.ndiaye@ 123456gmail.com (P.D.N.); patrick.brest@ 123456univ-cotedazur.fr (P.B.); hofman.p@ 123456chu-nice.fr (P.H.)
                [2 ]Higher School of Agriculture of Kef, University Jendouba, Le Kef and Laboratory of Histology, Embryology and Cell Biology, Faculty of Medicine Tunis, 7110 Le Kef, Tunisia
                [3 ]Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale (INSERM), F-06204 Nice, France; Veronique.IMBERT@ 123456univ-cotedazur.fr (V.I.); Jean-Francois.PEYRON@ 123456univ-cotedazur.fr (J.-F.P.)
                [4 ]Université Côte d’Azur, Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux énergies alternatives (CEA), F-06107 Nice, France; michelsamson64@ 123456yahoo.com (M.S.); Jean-Marie.GUIGONIS@ 123456univ-cotedazur.fr (J.-M.G.)
                [5 ]Université Côte d’Azur, Laboratoire de Physiomédecine Moléculaire, LP2M, Labex ICST, Centre National de la Recherche Scientifique (CNRS), F-06107 Nice, France; Michel.TAUC@ 123456univ-cotedazur.fr (M.T.); philippe.poujeol@ 123456yahoo.com (P.P.)
                [6 ]Université Côte d’Azur, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, F-06001 Nice, France
                Author notes
                [* ]Correspondence: baharia.MOGRABI@ 123456univ-cotedazur.fr ; Tel.: +33-4920-31243
                [†]

                These authors equally contributed to this work.

                Author information
                https://orcid.org/0000-0003-0431-9353
                Article
                cancers-13-02490
                10.3390/cancers13102490
                8161291
                b7015b95-c533-48d3-a6a9-055930faecff
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 21 April 2021
                : 11 May 2021
                Categories
                Article

                k63-linked ubiquitination,tumor suppression,selective autophagy,starvation-induced autophagy,aggrephagy,cyld deubiquitinase,carcinogen,cadmium,bafilomycin a1,nf-κb

                Comments

                Comment on this article