17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metabolic alterations in the sera of Chinese patients with mild persistent asthma: a GC-MS-based metabolomics analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim:

          To character the specific metabolomics profiles in the sera of Chinese patients with mild persistent asthma and to explore potential metabolic biomarkers.

          Methods:

          Seventeen Chinese patients with mild persistent asthma and age- and sex-matched healthy controls were enrolled. Serum samples were collected, and serum metabolites were analyzed using GC-MS coupled with a series of multivariate statistical analyses.

          Results:

          Clear intergroup separations existed between the asthmatic patients and control subjects. A list of differential metabolites and several top altered metabolic pathways were identified. The levels of succinate (an intermediate in tricarboxylic acid cycle) and inosine were highly upregulated in the asthmatic patients, suggesting a greater effort to breathe during exacerbation and hypoxic stress due to asthma. Other differential metabolites, such as 3,4-dihydroxybenzoic acid and phenylalanine, were also identified. Furthermore, the differential metabolites possessed higher values of area under the ROC curve (AUC), suggesting an excellent clinical ability for the prediction of asthma.

          Conclusion:

          Metabolic activity is significantly altered in the sera of Chinese patients with mild persistent asthma. The data might be helpful for identifying novel biomarkers and therapeutic targets for asthma.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Metabonomics: a platform for studying drug toxicity and gene function.

          The later that a molecule or molecular class is lost from the drug development pipeline, the higher the financial cost. Minimizing attrition is therefore one of the most important aims of a pharmaceutical discovery programme. Novel technologies that increase the probability of making the right choice early save resources, and promote safety, efficacy and profitability. Metabonomics is a systems approach for studying in vivo metabolic profiles, which promises to provide information on drug toxicity, disease processes and gene function at several stages in the discovery-and-development process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks

            Now that complete genome sequences are available for a variety of organisms, the elucidation of gene functions involved in metabolism necessarily includes a better understanding of cellular responses upon mutations on all levels of gene products, mRNA, proteins, and metabolites. Such progress is essential since the observable properties of organisms – the phenotypes – are produced by the genotype in juxtaposition with the environment. Whereas much has been done to make mRNA and protein profiling possible, considerably less effort has been put into profiling the end products of gene expression, metabolites. To date, analytical approaches have been aimed primarily at the accurate quantification of a number of pre-defined target metabolites, or at producing fingerprints of metabolic changes without individually determining metabolite identities. Neither of these approaches allows the formation of an in-depth understanding of the biochemical behaviour within metabolic networks. Yet, by carefully choosing protocols for sample preparation and analytical techniques, a number of chemically different classes of compounds can be quantified simultaneously to enable such understanding. In this review, the terms describing various metabolite-oriented approaches are given, and the differences among these approaches are outlined. Metabolite target analysis, metabolite profiling, metabolomics, and metabolic fingerprinting are considered. For each approach, a number of examples are given, and potential applications are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exhaled nitric oxide in pulmonary diseases: a comprehensive review.

              The upregulation of nitric oxide (NO) by inflammatory cytokines and mediators in central and peripheral airway sites can be monitored easily in exhaled air. It is now possible to estimate the predominant site of increased fraction of exhaled NO (FeNO) and its potential pathologic and physiologic role in various pulmonary diseases. In asthma, increased FeNO reflects eosinophilic-mediated inflammatory pathways moderately well in central and/or peripheral airway sites and implies increased inhaled and systemic corticosteroid responsiveness. Recently, five randomized controlled algorithm asthma trials reported only equivocal benefits of adding measurements of FeNO to usual clinical guideline management including spirometry; however, significant design issues may exist. Overall, FeNO measurement at a single expiratory flow rate of 50 mL/s may be an important adjunct for diagnosis and management in selected cases of asthma. This may supplement standard clinical asthma care guidelines, including spirometry, providing a noninvasive window into predominantly large-airway-presumed eosinophilic inflammation. In COPD, large/central airway maximal NO flux and peripheral/small airway/alveolar NO concentration may be normal and the role of FeNO monitoring is less clear and therefore less established than in asthma. Furthermore, concurrent smoking reduces FeNO. Monitoring FeNO in pulmonary hypertension and cystic fibrosis has opened up a window to the role NO may play in their pathogenesis and possible clinical benefits in the management of these diseases.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                November 2015
                03 November 2015
                : 36
                : 11
                : 1356-1366
                Affiliations
                [1 ]Department of Respiratory Medicine, Peking University Third Hospital , Beijing 100191, China
                [2 ]Department of Emergency Medicine, Peking University Third Hospital , Beijing 100191, China
                Author notes
                Article
                aps2015102
                10.1038/aps.2015.102
                4635323
                26526201
                b70649ec-12c3-40d0-8e3e-d3c5d3a102ed
                Copyright © 2015 CPS and SIMM
                History
                : 28 January 2015
                : 11 July 2015
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                mild persistent asthma,chinese patients,serum metabolites,metabolomics,succinate,inosine,gc-ms

                Comments

                Comment on this article