0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Change from conventional haemodiafiltration to on-line haemodiafiltration.

      Nephrology Dialysis Transplantation

      metabolism, Aged, Erythropoietin, administration & dosage, Evaluation Studies as Topic, Female, Hematocrit, Hemodiafiltration, methods, Hemoglobins, Adult, Humans, Kidney Failure, Chronic, blood, physiopathology, therapy, Male, Middle Aged, Recombinant Proteins, Urea, beta 2-Microglobulin

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On-line haemodiafiltration (HDF) is a technique which combines diffusion with elevated convection and uses pyrogen-free dialysate as a replacement fluid. The purpose of this study was to evaluate the difference between conventional HDF (1-3 l/h) and on-line HDF (6-12 l/h). The study included 37 patients, 25 males and 12 females. The mean age was 56.5 +/- 13 years and duration of dialysis was 62.7 +/- 49 months. Three patients dropped out for transplantation, three patients died and three failed to complete the study period. Initially all patients were on conventional HDF with high-flux membranes over the preceding 34 +/- 32 months. Treatment was performed with blood flow (QB) 402 +/- 41 ml/min, dialysis time (Td) 187 min, dialysate flow (QD) 654 +/- 126 ml/min and replacement fluid (Qi) 4.0 +/- 2 l/session. Patients were changed to on-line HDF with the same filtre and dialysis time, QD 679 +/- 38 ml/min (NS), QB 434 +/- 68 ml/min (P < 0.05) and post-dilutional replacement fluid 22.5 +/- 4.3 l/session (P < 0.001). We compared conventional HDF with on-line HDF over a period of 1 year. Dialysis adequacy was monitored according to standard clinical and biochemical criteria. Kinetic analysis of urea and beta2-micro-globulin (beta2m) was performed monthly. Tolerance was excellent and no pyrogenic reactions were observed. Pre-dialysis sodium increased 2 mEq/l during on-line HDF. Plasma potassium, pre- and post-dialysis bicarbonate, uric acid, phosphate, calcium, iPTH, albumin, total proteins, cholesterol and triglycerides remained stable. The mean plasma beta2m reduction ratio increased from 56.1 +/- 8.7% in conventional HDF to 71.1 +/- 9.1% in on-line HDF (P < 0.001). The pre-dialysis plasma beta2m decreased from 27.4 +/- 8.1 to 24.2 +/- 6.5 mg/l (P < 0.01). Mean Kt/V (Daugirdas 2nd generation) was 1.35 +/- 0.21 in conventional HDF compared with 1.56 +/- 0.29 in on-line HDF (P < 0.01), Kt/Vr (Kt/V taking into consideration post-dialysis urea rebound) 1.12 +/- 0.17 vs 1.26 +/- 0.20 (P < 0.01), BUN time average concentration (TAC) 44.4 +/- 9 vs 40.6 +/- 10 mg/dl (P < 0.05) and protein catabolic rate (PCR) 1.13 +/- 0.22 vs 1.13 +/- 0.24 g/kg (NS). There was a significant increase in haemoglobin (10.66 +/- 1.1 vs 11.4 +/- 1.5) and haematocrit (32.2 +/- 2.9 vs 34.0 +/- 4.4%), P < 0.05, during the on-line HDF period, which allowed a decrease in the erythropoietin doses (3861 +/- 2446 vs 3232 +/- 2492 UI/week), (P < 0.05). Better blood pressure control (MAP 103.8 +/- 15 vs 97.8 +/- 11 mmHg, P < 0.01) and a lower percentage of patients requiring antihypertensive drugs were also observed. The change from conventional HDF to on-line HDF results in increased convective removal and fluid replacement (18 l/session). During on-line HDF treatment, dialysis dose was increased for both small and large molecules with a decrease in uraemic toxicity level (TAC). On-line HDF provided a better correction of anaemia with lower dosages of erythropoietin. Finally, blood pressure was easily controlled.

          Related collections

          Author and article information

          Journal
          10344362

          Comments

          Comment on this article