18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-Term Outcomes and Practical Considerations in the Pharmacological Management of Tyrosinemia Type 1

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in tyrosine catabolism. TT1 is clinically characterized by acute liver failure, development of hepatocellular carcinoma, renal and neurological problems, and consequently an extremely poor outcome. This review showed that the introduction of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) in 1992 has revolutionized the outcome of TT1 patients, especially when started pre-clinically. If started early, NTBC can prevent liver failure, renal problems, and neurological attacks and decrease the risk for hepatocellular carcinoma. NTBC has been shown to be safe and well tolerated, although the long-term effectiveness of treatment with NTBC needs to be awaited. The high tyrosine concentrations caused by treatment with NTBC could result in ophthalmological and skin problems and requires life-long dietary restriction of tyrosine and its precursor phenylalanine, which could be strenuous to adhere to. In addition, neurocognitive problems have been reported since the introduction of NTBC, with hypothesized but as yet unproven pathophysiological mechanisms. Further research should be done to investigate the possible relationship between important clinical outcomes and blood concentrations of biochemical parameters such as phenylalanine, tyrosine, succinylacetone, and NTBC, and to develop clear guidelines for treatment and follow-up with reliable measurements. This all in order to ultimately improve the combined NTBC and dietary treatment and limit possible complications such as hepatocellular carcinoma development, neurocognitive problems, and impaired quality of life.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Natural history of alkaptonuria.

          Alkaptonuria, caused by mutations in the HGO gene and a deficiency of homogentisate 1,2-dioxygenase, results in an accumulation of homogentisic acid (HGA), ochronosis, and destruction of connective tissue. There is no effective therapy for this disorder, although nitisinone inhibits the enzyme that produces HGA. We performed a study to delineate the natural history of alkaptonuria. We evaluated 58 patients with alkaptonuria (age range, 4 to 80 years), using clinical, radiographic, biochemical, and molecular methods. A radiographic scoring system was devised to assess the severity of spinal and joint damage. Two patients were treated with nitisinone for 10 and 9 days, respectively. Life-table analyses showed that joint replacement was performed at a mean age of 55 years and that renal stones developed at 64 years, cardiac-valve involvement at 54 years, and coronary-artery calcification at 59 years. Linear regression analysis indicated that the radiographic score for the severity of disease began increasing after the age of 30 years, with a more rapid increase in men than in women. Twenty-three new HGO mutations were identified. In a 51-year-old woman, urinary HGA excretion fell from 2.9 to 0.13 g per day after a 10-day course of nitisinone (7 days at a dose of 0.7 mg per day and 3 days at 2.8 mg per day). In a 59-year-old woman, urinary HGA fell from 6.4 g to 1.7 g per day after nine days of treatment with nitisinone (0.7 mg per day). Plasma tyrosine levels in these patients rose from approximately 1.1 mg per deciliter (60 micromol per liter) in both to approximately 12.8 mg per deciliter (700 micromol per liter) and 23.6 mg per deciliter (1300 micromol per liter), respectively, with no clinical signs or symptoms. The reported data on the natural history of alkaptonuria provide a basis for the evaluation of long-term therapies. Although nitisinone can reduce HGA production in humans with homogentisate 1,2-dioxygenase deficiency, the long-term safety and efficacy of this treatment require further evaluation. Copyright 2002 Massachusetts Medical Society
            • Record: found
            • Abstract: found
            • Article: not found

            In utero CRISPR-mediated therapeutic editing of metabolic genes

            In utero gene editing has the potential to prenatally treat genetic diseases that result in significant morbidity and mortality before or shortly after birth. We assessed the viral vector-mediated delivery of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated 9 (CRISPR-Cas9) or base editor 3 (BE3) in utero, seeking therapeutic modification of Pcsk9 or Hpd in wild-type mice or the murine model of hereditary tyrosinemia type 1 (HT1), respectively. We observed long-term postnatal persistence of edited cells in both models, with reduction of plasma PCSK9 and cholesterol levels following in utero Pcsk9 targeting and rescue of the lethal phenotype of HT1 following in utero Hpd targeting. The results of this proof-of-concept work demonstrate the possibility to efficiently perform gene editing before birth, pointing to a potential new therapeutic approach for select congenital genetic disorders.
              • Record: found
              • Abstract: not found
              • Article: not found

              Prefrontal Cortex Cognitive Deficits in Children Treated Early and Continuously for PKU

                Author and article information

                Contributors
                +31 50 3614944 , f.j.van.spronsen@umcg.nl
                Journal
                Paediatr Drugs
                Paediatr Drugs
                Paediatric Drugs
                Springer International Publishing (Cham )
                1174-5878
                1179-2019
                31 October 2019
                31 October 2019
                2019
                : 21
                : 6
                : 413-426
                Affiliations
                [1 ]Department of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
                [2 ]Department of Dietetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
                [3 ]GRID grid.5288.7, ISNI 0000 0000 9758 5690, Department of Molecular and Medical Genetics, , Oregon Health & Science University, ; Portland, USA
                [4 ]GRID grid.7177.6, ISNI 0000000084992262, Deparment of Endocrinology and Metabolism, , Amsterdam University Medical Center, University of Amsterdam, ; Amsterdam, The Netherlands
                [5 ]Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
                Article
                364
                10.1007/s40272-019-00364-4
                6885500
                31667718
                b7179b3f-77f9-4c79-9398-13c0da20f363
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Categories
                Leading Article
                Custom metadata
                © Springer Nature Switzerland AG 2019

                Comments

                Comment on this article

                Related Documents Log