+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Central Type 2 Corticotropin-Releasing Hormone Receptor Mediates Hypothalamic-Pituitary-Adrenocortical Axis Activation in the Rat


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          In an attempt to clarify the role of the type 2 corticotropin-releasing hormone (CRH) receptor (CRHR-2) in the brain in activation of the hypothalamic-pituitary-adrenocortical axis, we conducted experiments using male Wistar rats. First, an injection of urocortin-2 (7.5 µg) into the lateral ventricle resulted in transient increases in CRH heteronuclear RNA (hnRNA) in parvocellular paraventricular nucleus (PVN) and in plasma adrenocorticotropic hormone (ACTH), whereas sustained increases in arginine vasopressin (AVP) hnRNA and c-fos mRNA in the parvocellular PVN were observed as compared with vehicle treatment. Pretreatment with the selective CRHR-2 antagonist antisauvagine-30 (20 µg) into the lateral ventricle 15 min prior to agonist injection attenuated the stimulatory effects of urocortin-2 on the above-mentioned hypothalamic-pituitary-adrenal axis variables. These effects were similar or rather more potent than those induced by pretreatment with 50 µg of α-helical CRH. Second, we found longer-lasting increases in CRH and AVP hnRNA and c-fos mRNA in parvocellular PVN and in plasma ACTH following central administration of urocortin-3 (7.5 µg) than following urocortin-2. Pretreatment with antisauvagine-30 antagonized the effects of urocortin-3 on the above-mentioned variables. Finally, central administration of antisauvagine-30 as well as α-helical CRH profoundly attenuated restraint-stress-induced increases in AVP hnRNA. However, α-helical CRH, but not antisauvagine-30, attenuated restraint-stress-induced increases in CRH hnRNA in the PVN. Both antagonists transiently attenuated stress responses of c-fos mRNA in PVN and plasma ACTH. These results indicate that there is a CRHR-2-mediated mechanism in the brain that stimulates CRH- and AVP-producing neurons in the PVN which results in the promotion of plasma ACTH secretion.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness

          Appropriate regulatory control of the hypothalamo-pituitary-adrenocortical stress axis is essential to health and survival. The following review documents the principle extrinsic and intrinsic mechanisms responsible for regulating stress-responsive CRH neurons of the hypothalamic paraventricular nucleus, which summate excitatory and inhibitory inputs into a net secretory signal at the pituitary gland. Regions that directly innervate these neurons are primed to relay sensory information, including visceral afferents, nociceptors and circumventricular organs, thereby promoting 'reactive' corticosteroid responses to emergent homeostatic challenges. Indirect inputs from the limbic-associated structures are capable of activating these same cells in the absence of frank physiological challenges; such 'anticipatory' signals regulate glucocorticoid release under conditions in which physical challenges may be predicted, either by innate programs or conditioned stimuli. Importantly, 'anticipatory' circuits are integrated with neural pathways subserving 'reactive' responses at multiple levels. The resultant hierarchical organization of stress-responsive neurocircuitries is capable of comparing information from multiple limbic sources with internally generated and peripherally sensed information, thereby tuning the relative activity of the adrenal cortex. Imbalances among these limbic pathways and homeostatic sensors are likely to underlie hypothalamo-pituitary-adrenocortical dysfunction associated with numerous disease processes.
            • Record: found
            • Abstract: found
            • Article: not found

            Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse.

            Two G protein-coupled receptors have been identified that bind corticotropin-releasing factor (CRF) and urocortin (UCN) with high affinity. Hybridization histochemical methods were used to shed light on controversies concerning their localization in rat brain, and to provide normative distributional data in mouse, the standard model for genetic manipulation in mammals. The distribution of CRF-R1 mRNA in mouse was found to be fundamentally similar to that in rat, with expression predominating in the cerebral cortex, sensory relay nuclei, and in the cerebellum and its major afferents. Pronounced species differences in distribution were few, although more subtle variations in the relative strength of R1 expression were seen in several forebrain regions. CRF-R2 mRNA displayed comparable expression in rat and mouse brain, distinct from, and more restricted than that of CRF-R1. Major neuronal sites of CRF-R2 expression included aspects of the olfactory bulb, lateral septal nucleus, bed nucleus of the stria terminalis, ventromedial hypothalamic nucleus, medial and posterior cortical nuclei of the amygdala, ventral hippocampus, mesencephalic raphe nuclei, and novel localizations in the nucleus of the solitary tract and area postrema. Several sites of expression in the limbic forebrain were found to overlap partially with ones of androgen receptor expression. In pituitary, rat and mouse displayed CRF-R1 mRNA signal continuously over the intermediate lobe and over a subset of cells in the anterior lobe, whereas CRF-R2 transcripts were expressed mainly in the posterior lobe. The distinctive expression pattern of CRF-R2 mRNA identifies additional putative central sites of action for CRF and/or UCN. Constitutive expression of CRF-R2 mRNA in the nucleus of the solitary tract, and stress-inducible expression of CRF-R1 transcripts in the paraventricular nucleus may provide a basis for understanding documented effects of CRF-related peptides at a loci shown previously to lack a capacity for CRF-R expression or CRF binding. Other such "mismatches" remain to be reconciled. Copyright 2000 Wiley-Liss, Inc.
              • Record: found
              • Abstract: found
              • Article: not found

              Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor.

              Corticotropin-releasing factor (CRF), a peptide first isolated from mammalian brain, is critical in the regulation of the pituitary-adrenal axis, and in complementary stress-related endocrine, autonomic and behavioural responses. Fish urotensin I and amphibian sauvagine were considered to be homologues of CRF until peptides even more closely related to CRF were identified in these same vertebrate classes. We have characterized another mammalian member of the CRF family and have localized its urotensin-like immunoreactivity to, and cloned related complementary DNAs from, a discrete rat midbrain region. The deduced protein encodes a peptide that we name urocortin, which is related to urotensin (63% sequence identity) and CRF (45% sequence identity). Synthetic urocortin evokes secretion of adrenocorticotropic hormone (ACTH) both in vitro and in vivo and binds and activates transfected type-1 CRF receptors, the subtype expressed by pituitary corticotropes. The coincidence of urotensin-like immunoreactivity with type-2 CRF receptors in brain, and our observation that urocortin is more potent than CRF at binding and activating type-2 CRF receptors, as well as at inducing c-Fos (an index of cellular activation) in regions enriched in type-2 CRF receptors, indicate that this new peptide could be an endogenous ligand for type-2 CRF receptors.

                Author and article information

                S. Karger AG
                August 2007
                04 June 2007
                : 86
                : 1
                : 1-16
                Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
                103556 Neuroendocrinology 2007;86:1–16
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 8, Tables: 1, References: 65, Pages: 16
                CRF, Adrenocorticotropin, Adrenal Steroids and Stress

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Corticotropin-releasing hormone receptor,Vasopressin,Urocortin,c-fos mRNA,Stress


                Comment on this article