24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Influence of bio-based solvents on the catalytic reductive fractionation of birch wood

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the reductive catalytic fractionation of lignocellulose, the choice of solvent significantly impacts the delignification efficiency, carbohydrate retention in the pulp and the macrostructure of the pulp.

          Reductive catalytic fractionation constitutes a promising approach to separate lignocellulose into a solid carbohydrate pulp and a stable liquid lignin oil. The process is able to extract and convert most of the lignin into soluble mono-, di- and oligomers, while retaining most of the carbohydrates in the pulp. This contribution studies the impact of the solvent choice on both pulp retention and delignification efficiency. Several bio-derivable solvents with varying properties were therefore tested in the Pd/C-catalyzed reductive liquid processing of birch wood. Though a high solvent polarity favors delignification, a too polar solvent like water causes significant solubilization of carbohydrates. A new empirical descriptor, denoted as ‘lignin-first delignification efficiency’ (LFDE), is introduced as a measure of efficient wood processing into soluble lignin derivatives and solid sugar pulp. Of all tested solvents, methanol and ethylene glycol showed the highest LFDE values, and these values could be increased by increasing both reaction time and temperature. Moreover, substantial differences regarding the process characteristics and analyzed product fractions between these two different solvents were discussed extensively. Most striking is the impact of the solvent on the pulp macrostructure, with methanol yielding a pulp composed of aggregated fiber cells, whereas the ethylene glycol pulp comprises nicely separated fiber cells.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: not found
          • Article: not found

          Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Solvatochromic Dyes as Solvent Polarity Indicators

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Conversion of biomass into chemicals over metal catalysts.

                Bookmark

                Author and article information

                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2015
                2015
                : 17
                : 11
                : 5035-5045
                Article
                10.1039/C5GC01442E
                b7266a42-baf3-4392-a32f-c9d2f3680ea5
                © 2015
                History

                Comments

                Comment on this article