Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tidal, daily, and lunar-day activity cycles in the marine polychaete Nereis virens.

      Chronobiology International

      Tidal Waves, Animals, physiology, Polychaeta, Photoperiod, Moon, Circadian Rhythm, Biological Clocks, Behavior, Animal

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The burrow emergence activity of the wild caught ragworm Nereis virens Sars associated with food prospecting was investigated under various photoperiodic (LD) and simulated tidal cycles (STC) using a laboratory based actograph. Just over half (57%) of the animals under LD with STC displayed significant tidal (approximately 12.4 h) and/or lunar-day (approximately 24.8 h) activity patterns. Under constant light (LL) plus a STC, 25% of all animals were tidal, while one animal responded with a circadian (24.2 h) activity rhythm suggestive of cross-modal entrainment where the environmental stimulus of one period entrains rhythmic behavior of a different period. All peaks of activity under a STC, apart from that of the individual cross-modal entrainment case, coincided with the period of tank flooding. Under only LD without a STC, 49% of the animals showed nocturnal (approximately 24 h) activity. When animals were maintained under free-running LL conditions, 15% displayed significant rhythmicity with circatidal and circadian/circalunidian periodicities. Although activity cycles in N. virens at the population level are robust, at the individual level they are particularly labile, suggesting complex biological clock-control with multiple clock output pathways.

          Related collections

          Author and article information

          Journal
          10.1080/07420520902774524
          19212835

          Comments

          Comment on this article