27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Branched Polyethylenimine-Superparamagnetic Iron Oxide Nanoparticles (bPEI-SPIONs) Improve the Immunogenicity of Tumor Antigens and Enhance Th1 Polarization of Dendritic Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoparticles in the field of dendritic cell (DC) research are emerging as a promising method of enhancing the efficacy of cancer immunotherapy. We investigated the effect of branched polyethylenimine-superparamagnetic iron oxide nanoparticles (bPEI-SPIONs) on tumor cells loaded onto DCs. The tumor antigens were prepared as follows: (1) apoptotic U266 cells with ultraviolet B (UVB) irradiation followed by a 2 h incubation in the absence (2 h postirradiated cells) or (2) presence of bPEI-SPIONs (bPEI-SPION 2 h postirradiated cells) and (3) apoptotic U266 cells with UVB irradiation followed by an overnight 16 h incubation (16 h postirradiated cells). bPEI-SPIONs render U266 cells sensitive to UVB irradiation through reactive oxygen species production to accelerate apoptotic death. The 2 h postirradiated cells and bPEI-SPION 2 h postirradiated cells released immunogenic proteins, including Hsp70, Hsp90, and HMGB1. The DCs loaded with bPEI-SPION 2 h postirradiated cells showed the highest IL-12p70 production and Th1 polarization compared with other DCs. These results suggest that bPEI-SPIONs are a promising method of enhancing the immunogenicity of tumor cells and promoting Th1 polarization of DCs loaded with these tumor cells.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          PAMP s and DAMP s: signal 0s that spur autophagy and immunity

          Summary Pathogen‐associated molecular pattern molecules (PAMPs) are derived from microorganisms and recognized by pattern recognition receptor (PRR)‐bearing cells of the innate immune system as well as many epithelial cells. In contrast, damage‐associated molecular pattern molecules (DAMPs) are cell‐derived and initiate and perpetuate immunity in response to trauma, ischemia, and tissue damage, either in the absence or presence of pathogenic infection. Most PAMPs and DAMPs serve as so‐called ‘Signal 0s’ that bind specific receptors [Toll‐like receptors, NOD‐like receptors, RIG‐I‐like receptors, AIM2‐like receptors, and the receptor for advanced glycation end products (RAGE)] to promote autophagy. Autophagy, a conserved lysosomal degradation pathway, is a cell survival mechanism invoked in response to environmental and cellular stress. Autophagy is inferred to have been present in the last common eukaryotic ancestor and only to have been lost by some obligatory intracellular parasites. As such, autophagy represents a unifying biology, subserving survival and the earliest host defense strategies, predating apoptosis, within eukaryotes. Here, we review recent advances in our understanding of autophagic molecular mechanisms and functions in emergent immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular characteristics of immunogenic cancer cell death.

            Apoptotic cell death is initiated by a morphologically homogenous entity that was considered to be non-immunogenic and non-inflammatory in nature. However, recent advances suggest that apoptosis, under certain circumstances, can be immunogenic. In particular, some characteristics of the plasma membrane, acquired at preapoptotic stage, can cause immune effectors to recognize and attack preapoptotic tumor cells. The signals that mediate the immunogenicity of tumor cells involve elements of the DNA damage response (such as ataxia telangiectasia mutated and p53 activation), elements of the endoplasmic reticulum stress response (such as eukaryotic initiation factor 2alpha phosphorylation), as well as elements of the apoptotic response (such as caspase activation). Depending on the signal-transduction pathway, tumor cells responding to chemotherapy or radiotherapy can express 'danger' and 'eat me' signals on the cell surface (such as NKG2D ligands, heat-shock proteins and calreticulin) or can secrete/release immunostimulatory factors (such as cytokines and high-mobility group box 1) to stimulate innate immune effectors. Likewise, the precise sequence of such events influences the 'decision' of the immune system to mount a cognate response or not. We therefore anticipate that the comprehension of the mechanisms governing the immunogenicity of cell death will have a profound impact on the design of anticancer therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization.

              High mobility group box protein 1 (HMGB1), a DNA binding nuclear and cytosolic protein, is a proinflammatory cytokine released by monocytes and macrophages. This study addressed the hypothesis that HMGB1 is an immunostimulatory signal that induces dendritic cell (DC) maturation. We show that HMGB1, via its B box domain, induced phenotypic maturation of DCs, as evidenced by increased CD83, CD54, CD80, CD40, CD58, and MHC class II expression and decreased CD206 expression. The B box caused increased secretion of the proinflammatory cytokines IL-12, IL-6, IL-1alpha, IL-8, TNF-alpha, and RANTES. B box up-regulated CD83 expression as well as IL-6 secretion via a p38 MAPK-dependent pathway. In the MLR, B box-activated DCs acted as potent stimulators of allogeneic T cells, and the magnitude of the response was equivalent to DCs activated by exposure to LPS, nonmethylated CpG oligonucleotides, or CD40L. Furthermore, B box induced secretion of IL-12 from DCs as well as IL-2 and IFN-gamma secretion from allogeneic T cells, suggesting a Th1 bias. HMGB1 released by necrotic cells may be a signal of tissue or cellular injury that, when sensed by DCs, induces and/or enhances an immune reaction.
                Bookmark

                Author and article information

                Journal
                J Immunol Res
                J Immunol Res
                JIR
                Journal of Immunology Research
                Hindawi Publishing Corporation
                2314-8861
                2314-7156
                2015
                28 June 2015
                : 2015
                : 706379
                Affiliations
                1Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 519-763, Republic of Korea
                2Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 519-763, Republic of Korea
                3Department of Biomedical Science, Chonnam National University Medical School, Gwangju 500-872, Republic of Korea
                Author notes

                Academic Editor: Eileen M. Bauer

                Article
                10.1155/2015/706379
                4499411
                26221615
                b74795e6-6208-4ada-92f7-3b52a6e74e74
                Copyright © 2015 My-Dung Hoang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 January 2015
                : 31 March 2015
                : 7 April 2015
                Categories
                Research Article

                Comments

                Comment on this article