51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Comparative Study of the Spatial Distribution of Schistosomiasis in Mali in 1984–1989 and 2004–2006

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We investigated changes in the spatial distribution of schistosomiasis in Mali following a decade of donor-funded control and a further 12 years without control.

          Methodology/Principal Findings

          National pre-intervention cross-sectional schistosomiasis surveys were conducted in Mali in 1984–1989 (in communities) and again in 2004–2006 (in schools). Bayesian geostatistical models were built separately for each time period and on the datasets combined across time periods. In the former, data from one period were used to predict prevalence of schistosome infections for the other period, and in the latter, the models were used to determine whether spatial autocorrelation and covariate effects were consistent across periods. Schistosoma haematobium prevalence was 25.7% in 1984–1989 and 38.3% in 2004–2006; S. mansoni prevalence was 7.4% in 1984–1989 and 6.7% in 2004–2006 (note the models showed no significant difference in mean prevalence of either infection between time periods). Prevalence of both infections showed a focal spatial pattern and negative associations with distance from perennial waterbodies, which was consistent across time periods. Spatial models developed using 1984–1989 data were able to predict the distributions of both schistosome species in 2004–2006 (area under the receiver operating characteristic curve was typically >0.7) and vice versa.

          Conclusions/Significance

          A decade after the apparently successful conclusion of a donor-funded schistosomiasis control programme from 1982–1992, national prevalence of schistosomiasis had rebounded to pre-intervention levels. Clusters of schistosome infections occurred in generally the same areas accross time periods, although the precise locations varied. To achieve long-term control, it is essential to plan for sustainability of ongoing interventions, including stengthening endemic country health systems.

          Author Summary

          Geostatistical maps are increasingly being used to plan neglected tropical disease control programmes. We investigated the spatial distribution of schistosomiasis in Mali prior to implementation of national donor-funded mass chemotherapy programmes using data from 1984–1989 and 2004–2006. The 2004–2006 dataset was collected after 10 years of schistosomiasis control followed by 12 years of no control. We found that national prevalence of Schistosoma haematobium and S. mansoni was not significantly different in 2004–2006 compared to 1984–1989 and that the spatial distribution of both infections was similar in both time periods, to the extent that models built on data from one time period could accurately predict the spatial distribution of prevalence of infection in the other time period. This has two main implications: that historic data can be used, in the first instance, to plan contemporary control programmes due to the stability of the spatial distribution of schistosomiasis; and that a decade of donor-funded mass distribution of praziquantel has had no discernable impact on the burden of schistosomiasis in subsequent generations of Malians, probably due to rapid reinfection.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk.

          An estimated 779 million people are at risk of schistosomiasis, of whom 106 million (13.6%) live in irrigation schemes or in close proximity to large dam reservoirs. We identified 58 studies that examined the relation between water resources development projects and schistosomiasis, primarily in African settings. We present a systematic literature review and meta-analysis with the following objectives: (1) to update at-risk populations of schistosomiasis and number of people infected in endemic countries, and (2) to quantify the risk of water resources development and management on schistosomiasis. Using 35 datasets from 24 African studies, our meta-analysis showed pooled random risk ratios of 2.4 and 2.6 for urinary and intestinal schistosomiasis, respectively, among people living adjacent to dam reservoirs. The risk ratio estimate for studies evaluating the effect of irrigation on urinary schistosomiasis was in the range 0.02-7.3 (summary estimate 1.1) and that on intestinal schistosomiasis in the range 0.49-23.0 (summary estimate 4.7). Geographic stratification showed important spatial differences, idiosyncratic to the type of water resources development. We conclude that the development and management of water resources is an important risk factor for schistosomiasis, and hence strategies to mitigate negative effects should become integral parts in the planning, implementation, and operation of future water projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conquering schistosomiasis in China: the long march.

            The last half-century of schistosomiasis control activities in China have brought down the overall prevalence of human infection with Schistosoma japonicum to less than 10% of the level initially documented in the mid 1950s. Importantly, this reduction is not only, or even mainly, due to the advent of praziquantel in the 1970s and its subsequent dramatic fall in price. Instead, it is the result of a sustained, multifaceted national strategy, adapted to different eco-epidemiological settings, which has been versatile enough to permit subtle adjustments over time as the nature of the challenge changed. Consequently, prevalence has been falling relatively smoothly over the whole period rather than suddenly dropping when mass chemotherapy became feasible. Thus, early recognition of the huge public health and economic significance of the disease, and the corresponding political will to do something about it,underpinned this success. In addition, intersectoral collaboration and community participation played important roles in forming a sustained commitment to a working control strategy based on local resources. The unfolding story is presented from the early years' strong focus on snail control, by means of environmental management, to the last period of praziquantel-based morbidity control carried out under the 10-year World Bank Loan Project (WBLP). An important legacy of the WBLP is the understanding that a research component would sustain control measures and enable future progress. We are now witnessing the payoffs of this forward thinking in the form of a new promising class of drugs, improved diagnostics, and budding vaccine development in addition to novel ways of disease risk prediction and transmission control using satellite-based remote sensing. Different aspects of social and economic approaches are also covered and the importance of health promotion and education is emphasized. Issuing from the review is a set of recommendations, which might further consolidate current control activities, with the ultimate aim to eliminate schistosomiasis from the Chinese mainland.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania.

              To predict the spatial distributions of Schistosoma haematobium and S. mansoni infections to assist planning the implementation of mass distribution of praziquantel as part of an on-going national control programme in Tanzania. Bayesian geostatistical models were developed using parasitological data from 143 schools. In the S. haematobium models, although land surface temperature and rainfall were significant predictors of prevalence, they became non-significant when spatial correlation was taken into account. In the S. mansoni models, distance to water bodies and annual minimum temperature were significant predictors, even when adjusting for spatial correlation. Spatial correlation occurred over greater distances for S. haematobium than for S. mansoni. Uncertainties in predictions were examined to identify areas requiring further data collection before programme implementation. Bayesian geostatistical analysis is a powerful and statistically robust tool for identifying high prevalence areas in a heterogeneous and imperfectly known environment.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                May 2009
                5 May 2009
                : 3
                : 5
                : e431
                Affiliations
                [1 ]School of Population Health, University of Queensland, Herston, Queensland, Australia
                [2 ]Australian Centre for International and Tropical Health, Queensland Institute of Medical Research, Herston, Queensland, Australia
                [3 ]Schistosomiasis Control Initiative, Imperial College London, London, United Kingdom
                [4 ]Institut National de Recherche en Santé Publique, Bamako, Mali
                [5 ]Programme National de Lutte Contre la Schistosomiase, Ministère de la Santé, Bamako, Mali
                [6 ]Département d'Enseignement et de Recherche en Santé Publique, Faculté de Médecine de Pharmacie et d'Odonto-Stomatologie, Université de Bamako, Bamako, Mali
                [7 ]Preventive Chemotherapy and Transmission Control, Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
                [8 ]London School of Hygiene and Tropical Medicine, London, United Kingdom
                [9 ]Malaria Public Health and Epidemiology Group, KEMRI/Wellcome Trust Collaborative Programme, Nairobi, Kenya
                University of California Berkeley, United States of America
                Author notes

                Conceived and designed the experiments: ACAC. Analyzed the data: ACAC. Wrote the paper: ACAC. Coordinated the surveys and organised data entry: EBO AFG. Provided detailed comments on the draft: EBO MS AL RD MT GC AFG AF SB. Managed field survey teams: MS AL RD GC. Provided leadership for the national control programme: MT AF. Involved in the 1984–1989 surveys: MT. Collated the 1984–1989 data and provided guidance and direction on the statistical analysis: SB.

                Article
                08-PNTD-RA-0475R2
                10.1371/journal.pntd.0000431
                2671597
                19415108
                b751ecfd-ded6-4b0a-900f-e3fb7c23f76b
                Clements et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 January 2009
                : 9 April 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Infectious Diseases/Epidemiology and Control of Infectious Diseases
                Infectious Diseases/Helminth Infections
                Infectious Diseases/Neglected Tropical Diseases
                Public Health and Epidemiology/Epidemiology
                Public Health and Epidemiology/Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article