6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Effects of Leptin on Intracellular Calcium Concentrations in Isolated Porcine Somatotropes

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leptin, the product of the obese gene, is a protein that is secreted primarily from adipocytes. Leptin can influence the function of the pituitary gland through its action on the hypothalamus, but it can also directly act at the level of the pituitary gland. The ability of leptin to induce an increase in intracellular Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>) in somatotropes was examined in dispersed porcine pituitary cells using a calcium imaging system. Somatotropes were functionally identified by the application of human growth hormone releasing hormone. Leptin increased [Ca<sup>2+</sup>]<sub>i</sub> in porcine somatotropes in a dose-dependent manner. The application of 100 n M leptin for 3 min did not have a significant effect on [Ca<sup>2+</sup>]<sub>i</sub>, while a 3-min application of 1 µ M leptin increased [Ca<sup>2+</sup>]<sub>i</sub> in about 50% of the somatotropes (p < 0.01). The application of a second leptin challenge (1 µ M) evoked a response in only 18% of the observed somatotropes. The stimulatory effect of leptin was abolished in low calcium saline and blocked by nifedipine, an L-calcium channel blocker, suggesting an involvement of calcium channels. Pretreatment of the cultures with AG 490, a specific Janus kinase inhibitor, and with SB 203580, a mitogen-activated protein kinase (MAP kinase) inhibitor, abolished the increase in [Ca<sup>2+</sup>]<sub>i </sub>evoked by leptin. In the presence of N<sup>ω</sup>-nitro- L-arginine methyl ester ( L-NAME), a nitric oxide synthase (NOS) inhibitor, the magnitude of the increase in [Ca<sup>2+</sup>]<sub>i</sub> evoked by 1 µ M leptin was not significantly changed. However, in the presence of L-NAME only 24% of the somatotropes responded to leptin, while in parallel control cultures 70% of the somatotropes responded to leptin. These results imply an involvement of Janus kinase/signal transducer and activator or transcription, MAP kinase and NOS-signaling pathways in the stimulatory effect of leptin on porcine somatotropes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of targets of leptin action in rat hypothalamus.

          The hypothesis that leptin (OB protein) acts in the hypothalamus to reduce food intake and body weight is based primarily on evidence from leptin-deficient, ob/ob mice. To investigate whether leptin exerts similar effects in normal animals, we administered leptin intracerebroventricularly (icv) to Long-Evans rats. Leptin administration (3.5 microg icv) at the onset of nocturnal feeding reduced food intake by 50% at 1 h and by 42% at 4 h, as compared with vehicle-treated controls (both P < 0.05). To investigate the basis for this effect, we used in situ hybridization (ISH) to determine whether leptin alters expression of hypothalamic neuropeptides involved in energy homeostasis. Two injections of leptin (3.5 microg icv) during a 40 h fast significantly decreased levels of mRNA for neuropeptide Y (NPY, which stimulates food intake) in the arcuate nucleus (-24%) and increased levels of mRNA for corticotrophin releasing hormone (CRH, an inhibitor of food intake) in the paraventricular nucleus (by 38%) (both P < 0.05 vs. vehicle-treated controls). To investigate the anatomic basis for these effects, we measured leptin receptor gene expression in rat brain by ISH using a probe complementary to mRNA for all leptin receptor splice variants. Leptin receptor mRNA was densely concentrated in the arcuate nucleus, with lower levels present in the ventromedial and dorsomedial hypothalamic nuclei and other brain areas involved in energy balance. These findings suggest that leptin action in rat hypothalamus involves altered expression of key neuropeptide genes, and implicate leptin in the hypothalamic response to fasting.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The stomach is a source of leptin.

            The circulating peptide leptin, which is the product of the ob gene, provides feedback information on the size of fat stores to central Ob receptors that control food intake and body-weight homeostasis. Leptin has so far been reported to be secreted only by adipocytes and the placenta. Here we show that leptin messenger RNA and leptin protein are present in rat gastric epithelium, and that cells in the glands of the gastric fundic mucosa are immunoreactive for leptin. The physiological function of this previously unsuspected source of leptin is unknown. However, both feeding and administration of CCK-8 (the biologically active carboxy-terminal end of cholecystokinin) result in a rapid and large decrease in both leptin cell immunoreactivity and the leptin content of the fundic epithelium, with a concomitant increase in the concentration of leptin in the plasma. These results indicate that gastric leptin may be involved in early CCK-mediated effects activated by food intake, possibly including satiety.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A nutrient-sensing pathway regulates leptin gene expression in muscle and fat.

              Leptin, the protein encoded by the obese (ob) gene, is synthesized and released in response to increased energy storage in adipose tissue. However, it is still not known how incoming energy is sensed and transduced into increased expression of the ob gene. The hexosamine biosynthetic pathway is a cellular 'sensor' of energy availability and mediates the effects of glucose on the expression of several gene products. Here we provide evidence for rapid activation of ob gene expression in skeletal muscle by glucosamine. Increased tissue concentrations of the end product of the hexosamine biosynthetic pathway, UDP-N-acetylglucosamine (UDP-GlcNAc), result in rapid and marked increases in leptin messenger RNA and protein levels (although these levels were much lower than those in fat). Plasma leptin levels and leptin mRNA and protein levels in adipose tissue also increase. Most important, stimulation of leptin synthesis is reproduced by either hyperglycaemia or hyperlipidaemia, which also increase tissue levels of UDP-N-acetylglucosamine in conscious rodents. Finally, incubation of 3T3-L1 pre-adipocytes and L6 myocytes with glucosamine rapidly induces ob gene expression. Our findings are the first evidence of inducible leptin expression in skeletal muscle and unveil an important biochemical link between increased availability of nutrients and leptin expression.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2004
                November 2004
                09 June 2010
                : 80
                : 2
                : 73-82
                Affiliations
                Departments of aBiomedical Sciences and bAnimal Science, Iowa State University, Ames, Iowa, USA
                Article
                81843 Neuroendocrinology 2004;80:73–82
                10.1159/000081843
                15528950
                b757d194-73bb-4109-9e50-f62d44c5974f
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 19 April 2004
                : 09 August 2004
                Page count
                Figures: 4, References: 62, Pages: 10
                Categories
                Regulation of Anterior Pituitary Cells

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Somatotropes,Gonadotropin-releasing hormone,Calcium,Mitogen-activated protein kinases,Porcine,Leptin,Nitric oxide

                Comments

                Comment on this article