7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of the immune system influences speciation rates in teleost fishes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Teleost fishes constitute the most species-rich vertebrate clade and exhibit extensive genetic and phenotypic variation, including diverse immune defense strategies. The genomic basis of a particularly aberrant strategy is exemplified by Atlantic cod, in which a loss of major histocompatibility complex (MHC) II functionality coincides with a marked expansion of MHC I genes. Through low-coverage genome sequencing (9-39×), assembly and comparative analyses for 66 teleost species, we show here that MHC II is missing in the entire Gadiformes lineage and thus was lost once in their common ancestor. In contrast, we find that MHC I gene expansions have occurred multiple times, both inside and outside this clade. Moreover, we identify an association between high MHC I copy number and elevated speciation rates using trait-dependent diversification models. Our results extend current understanding of the plasticity of the adaptive immune system and suggest an important role for immune-related genes in animal diversification.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ASTRAL: genome-scale coalescent-based species tree estimation

          Motivation: Species trees provide insight into basic biology, including the mechanisms of evolution and how it modifies biomolecular function and structure, biodiversity and co-evolution between genes and species. Yet, gene trees often differ from species trees, creating challenges to species tree estimation. One of the most frequent causes for conflicting topologies between gene trees and species trees is incomplete lineage sorting (ILS), which is modelled by the multi-species coalescent. While many methods have been developed to estimate species trees from multiple genes, some which have statistical guarantees under the multi-species coalescent model, existing methods are too computationally intensive for use with genome-scale analyses or have been shown to have poor accuracy under some realistic conditions. Results: We present ASTRAL, a fast method for estimating species trees from multiple genes. ASTRAL is statistically consistent, can run on datasets with thousands of genes and has outstanding accuracy—improving on MP-EST and the population tree from BUCKy, two statistically consistent leading coalescent-based methods. ASTRAL is often more accurate than concatenation using maximum likelihood, except when ILS levels are low or there are too few gene trees. Availability and implementation: ASTRAL is available in open source form at https://github.com/smirarab/ASTRAL/. Datasets studied in this article are available at http://www.cs.utexas.edu/users/phylo/datasets/astral. Contact: warnow@illinois.edu Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Signals for sorting of transmembrane proteins to endosomes and lysosomes.

            Sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present within the cytosolic domains of the proteins. Most signals consist of short, linear sequences of amino acid residues. Some signals are referred to as tyrosine-based sorting signals and conform to the NPXY or YXXO consensus motifs. Other signals known as dileucine-based signals fit [DE]XXXL[LI] or DXXLL consensus motifs. All of these signals are recognized by components of protein coats peripherally associated with the cytosolic face of membranes. YXXO and [DE]XXXL[LI] signals are recognized with characteristic fine specificity by the adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4, whereas DXXLL signals are recognized by another family of adaptors known as GGAs. Several proteins, including clathrin, AP-2, and Dab2, have been proposed to function as recognition proteins for NPXY signals. YXXO and DXXLL signals bind in an extended conformation to the mu2 subunit of AP-2 and the VHS domain of the GGAs, respectively. Phosphorylation events regulate signal recognition. In addition to peptide motifs, ubiquitination of cytosolic lysine residues also serves as a signal for sorting at various stages of the endosomal-lysosomal system. Conjugated ubiquitin is recognized by UIM, UBA, or UBC domains present within many components of the internalization and lysosomal targeting machinery. This complex array of signals and recognition proteins ensures the dynamic but accurate distribution of transmembrane proteins to different compartments of the endosomal-lysosomal system.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution

                Bookmark

                Author and article information

                Journal
                Nature Genetics
                Nat Genet
                Springer Science and Business Media LLC
                1061-4036
                1546-1718
                October 2016
                August 22 2016
                October 2016
                : 48
                : 10
                : 1204-1210
                Article
                10.1038/ng.3645
                27548311
                b7598c90-ea92-4144-aba5-562a551b04f4
                © 2016

                https://creativecommons.org/licenses/by/4.0


                Comments

                Comment on this article