17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effect of Sanqi Oral Liquid (三芪口服液) on the expressions of CD4+, CD8+ and CD68+ cells in 5/6 nephrectomized rats with chronic renal failure

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney.

          Reperfusion following ischemia is associated with acute kidney injury and inflammation. Using a mouse model, we exposed the kidney to a nonlethal period of ischemia, rendering it refractory to future ischemia-induced dysfunction. This ischemic preconditioning is partially mediated by Treg lymphocytes that suppress immune responses. We found that this maneuver significantly inhibited the accumulation of neutrophils and macrophages, tubular necrosis, and loss of kidney function caused by a subsequent ischemia/reperfusion injury 1 week later. The initial ischemia/reperfusion caused a significant increase in CD4(+)CD25(+)FoxP3(+) and CD4(+)CD25(+)IL-10(+) Treg cells within the kidney at 7 days of reperfusion. Treatment of preconditioned mice with a Treg cell-depleting antibody (PC61) reversed the effect of preconditioning on kidney neutrophil accumulation and partially inhibited the functional and histological protection of preconditioning. Adoptive transfer of Treg cells in naive mice, before ischemia/reperfusion, mimicked the protective and anti-inflammatory effects of ischemic preconditioning on the kidney. These studies highlight the role of Treg cells in ischemic preconditioning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury.

            The progression of kidney disease to renal failure correlates with infiltration of mononuclear immune cells into the tubulointerstitium. These infiltrates contain macrophages, DCs, and T cells, but the role of each cell type in disease progression is unclear. To investigate the underlying immune mechanisms, we generated transgenic mice that selectively expressed the model antigens ovalbumin and hen egg lysozyme in glomerular podocytes (NOH mice). Coinjection of ovalbumin-specific transgenic CD8+ CTLs and CD4+ Th cells into NOH mice resulted in periglomerular mononuclear infiltrates and inflammation of parietal epithelial cells, similar to lesions frequently observed in human chronic glomerulonephritis. Repetitive T cell injections aggravated infiltration and caused progression to structural and functional kidney damage after 4 weeks. Mechanistic analysis revealed that DCs in renal lymph nodes constitutively cross-presented ovalbumin and activated CTLs. These CTLs released further ovalbumin for CTL activation in the lymph nodes and for simultaneous presentation to Th cells by distinct DC subsets residing in the kidney tubulointerstitium. Crosstalk between tubulointerstitial DCs and Th cells resulted in intrarenal cytokine and chemokine production and in recruitment of more CTLs, monocyte-derived DCs, and macrophages. The importance of DCs was established by the fact that DC depletion rapidly resolved established kidney immunopathology. These findings demonstrate that glomerular antigen-specific CTLs and Th cells can jointly induce renal immunopathology and identify kidney DCs as a mechanistic link between glomerular injury and the progression of kidney disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual roles of immunoregulatory cytokine TGF-beta in the pathogenesis of autoimmunity-mediated organ damage.

              Ample evidence suggests a role of TGF-beta in preventing autoimmunity. Multiorgan inflammatory disease, spontaneous activation of self-reactive T cells, and autoantibody production are hallmarks of autoimmune diseases, such as lupus. These features are reminiscent of the immunopathology manifest in TGF-beta1-deficient mice. In this study, we show that lupus-prone (New Zealand Black and White)F(1) mice have reduced expression of TGF-beta1 in lymphoid tissues, and TGF-beta1 or TGF-beta1-producing T cells suppress autoantibody production. In contrast, the expression of TGF-beta1 protein and mRNA and TGF-beta signaling proteins (TGF-beta receptor type II and phosphorylated SMAD3) increases in the target organs, i.e., kidneys, of these mice as they age and develop progressive organ damage. In fact, the levels of TGF-beta1 in kidney tissue and urine correlate with the extent of chronic lesions that represent local tissue fibrosis. In vivo TGF-beta blockade by treatment of these mice with an anti-TGF-beta Ab selectively inhibits chronic fibrotic lesions without affecting autoantibody production and the inflammatory component of tissue injury. Thus, TGF-beta plays a dual, seemingly paradoxical, role in the development of organ damage in multiorgan autoimmune diseases. According to our working model, reduced TGF-beta in immune cells predisposes to immune dysregulation and autoantibody production, which causes tissue inflammation that triggers the production of anti-inflammatory cytokines such as TGF-beta in target organs to counter inflammation. Enhanced TGF-beta in target organs, in turn, can lead to dysregulated tissue repair, progressive fibrogenesis, and eventual end-organ damage.
                Bookmark

                Author and article information

                Journal
                Chinese Journal of Integrative Medicine
                Chin. J. Integr. Med.
                Springer Science and Business Media LLC
                1672-0415
                1993-0402
                August 2013
                December 3 2012
                August 2013
                : 19
                : 8
                : 589-595
                Article
                10.1007/s11655-012-1233-5
                b7665861-e9ae-450a-b065-82cc92bb89ac
                © 2013

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article