11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d5568439e458">Immune checkpoint blockade (ICB) to reinvigorate cytotoxic T lymphocytes using antibodies against CTLA4 or PD1 generates durable therapeutic responses in patients across a variety of cancer types. However, some cancers such as castration-resistant prostate cancer (CRPC) show overwhelming resistance to ICB. Here, we develop a nitroproteomic approach and uncover a potential mechanism for the immunotherapy resistance where a key protein for T cell activation, lymphocyte-specific protein tyrosine kinase (LCK), is nitrated and inactivated by myeloid-derived suppressor cell–generated reactive nitrogen species (RNS) in the resistant tumor. An agent that neutralizes RNS significantly sensitizes CRPC to ICB therapy in a mouse model. Therefore, our studies illuminate a clinical path hypothesis for combining ICB with RNS-reducing agents in the treatment of ICB-resistant cancers. </p><p class="first" id="d5568439e461">Potent immunosuppressive mechanisms within the tumor microenvironment contribute to the resistance of aggressive human cancers to immune checkpoint blockade (ICB) therapy. One of the main mechanisms for myeloid-derived suppressor cells (MDSCs) to induce T cell tolerance is through secretion of reactive nitrogen species (RNS), which nitrates tyrosine residues in proteins involved in T cell function. However, so far very few nitrated proteins have been identified. Here, using a transgenic mouse model of prostate cancer and a syngeneic cell line model of lung cancer, we applied a nitroproteomic approach based on chemical derivation of 3-nitrotyrosine and identified that lymphocyte-specific protein tyrosine kinase (LCK), an initiating tyrosine kinase in the T cell receptor signaling cascade, is nitrated at Tyr394 by MDSCs. LCK nitration inhibits T cell activation, leading to reduced interleukin 2 (IL2) production and proliferation. In human T cells with defective endogenous LCK, wild type, but not nitrated LCK, rescues IL2 production. In the mouse model of castration-resistant prostate cancer (CRPC) by prostate-specific deletion of <i>Pten</i>, <i>p53</i>, and <i>Smad4</i>, CRPC is resistant to an ICB therapy composed of antiprogrammed cell death 1 (PD1) and anticytotoxic–T lymphocyte-associated protein 4 (CTLA4) antibodies. However, we showed that ICB elicits strong anti-CRPC efficacy when combined with an RNS neutralizing agent. Together, these data identify a previously unknown mechanism of T cell inactivation by MDSC-induced protein nitration and illuminate a clinical path hypothesis for combining ICB with RNS-reducing agents in the treatment of CRPC. </p>

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Peroxynitrite: biochemistry, pathophysiology and development of therapeutics.

          Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer.

            Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide-major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine

              Aerobic life in humans imposes the hazard of excess oxidation in cell and tissue components that may compromise cell function and viability. The formation and accumulation of oxidized products in biomolecules such as proteins and lipids are observed in various pathologies and during the normal aging process. This review article aims to integrate some early and remarkable discoveries in the field, with more recent developments that helped to define a causative role of oxygen radicals, nitric oxide, and peroxynitrite in human physiology and pathology. These aspects of human redox biochemistry contribute to the understanding of the molecular basis of diseases and aging and open avenues for the development of preventive and therapeutic strategies in molecular medicine. Oxygen-derived free radicals and related oxidants are ubiquitous and short-lived intermediates formed in aerobic organisms throughout life. These reactive species participate in redox reactions leading to oxidative modifications in biomolecules, among which proteins and lipids are preferential targets. Despite a broad array of enzymatic and nonenzymatic antioxidant systems in mammalian cells and microbes, excess oxidant formation causes accumulation of new products that may compromise cell function and structure leading to cell degeneration and death. Oxidative events are associated with pathological conditions and the process of normal aging. Notably, physiological levels of oxidants also modulate cellular functions via homeostatic redox-sensitive cell signaling cascades. On the other hand, nitric oxide ( • NO), a free radical and weak oxidant, represents a master physiological regulator via reversible interactions with heme proteins. The bioavailability and actions of • NO are modulated by its fast reaction with superoxide radical ( O 2 • − ), which yields an unusual and reactive peroxide, peroxynitrite, representing the merging of the oxygen radicals and • NO pathways. In this Inaugural Article, I summarize early and remarkable developments in free radical biochemistry and the later evolution of the field toward molecular medicine; this transition includes our contributions disclosing the relationship of • NO with redox intermediates and metabolism. The biochemical characterization, identification, and quantitation of peroxynitrite and its role in disease processes have concentrated much of our attention. Being a mediator of protein oxidation and nitration, lipid peroxidation, mitochondrial dysfunction, and cell death, peroxynitrite represents both a pathophysiologically relevant endogenous cytotoxin and a cytotoxic effector against invading pathogens.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 02 2018
                October 02 2018
                October 02 2018
                September 19 2018
                : 115
                : 40
                : 10094-10099
                Article
                10.1073/pnas.1800695115
                6176562
                30232256
                b7667b6c-88a6-4e0a-842f-d36656c635d7
                © 2018

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article