10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transgenerational plasticity and climate change experiments: Where do we go from here?

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within-generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          The adaptive significance of maternal effects

          T Mousseau (1998)
          Recently, the adaptive significance of maternal effects has been increasingly recognized. No longer are maternal effects relegated as simple `troublesome sources of environmental resemblance' that confound our ability to estimate accurately the genetic basis of traits of interest. Rather, it has become evident that many maternal effects have been shaped by the action of natural selection to act as a mechanism for adaptive phenotypic response to environmental heterogeneity. Consequently, maternal experience is translated into variation in offspring fitness.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Thermal Adaptation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Climate change, adaptation, and phenotypic plasticity: the problem and the evidence

              Many studies have recorded phenotypic changes in natural populations and attributed them to climate change. However, controversy and uncertainty has arisen around three levels of inference in such studies. First, it has proven difficult to conclusively distinguish whether phenotypic changes are genetically based or the result of phenotypic plasticity. Second, whether or not the change is adaptive is usually assumed rather than tested. Third, inferences that climate change is the specific causal agent have rarely involved the testing – and exclusion – of other potential drivers. We here review the various ways in which the above inferences have been attempted, and evaluate the strength of support that each approach can provide. This methodological assessment sets the stage for 11 accompanying review articles that attempt comprehensive syntheses of what is currently known – and not known – about responses to climate change in a variety of taxa and in theory. Summarizing and relying on the results of these reviews, we arrive at the conclusion that evidence for genetic adaptation to climate change has been found in some systems, but is still relatively scarce. Most importantly, it is clear that more studies are needed – and these must employ better inferential methods – before general conclusions can be drawn. Overall, we hope that the present paper and special issue provide inspiration for future research and guidelines on best practices for its execution.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Global Change Biology
                Glob Change Biol
                Wiley
                13541013
                January 2018
                January 2018
                October 12 2017
                : 24
                : 1
                : 13-34
                Affiliations
                [1 ]ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld Australia
                [2 ]School of Life Sciences; University of Technology Sydney; Broadway NSW Australia
                [3 ]Department of Biology; Kalamazoo College; Kalamazoo MI USA
                [4 ]Coastal Ecology Section; Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung; Wadden Sea Station Sylt, List Germany
                Article
                10.1111/gcb.13903
                29024256
                b76d729d-b673-4985-ab4e-ea47ed3ea5f7
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article