44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Selective in vitro glycosylation of recombinant proteins: semi-synthesis of novel homogeneous glycoforms of human erythropoietin

      , , , ,
      Chemistry & Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure-function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His(10)-WThEPO, His(10)-Asn24Cys, His(10)-Asn38Cys, His(10)-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l(-1) from Escherichia coli. Chemical glycosylation with glycosyl-beta-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Erythropoietin expressed in E. coli bearing specific Asn-->Cys mutations at natural glycosylation sites can be glycosylated using beta-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins.

          Related collections

          Author and article information

          Journal
          Chemistry & Biology
          Chemistry & Biology
          Elsevier BV
          10745521
          February 2001
          February 2001
          : 8
          : 2
          : 133-145
          Article
          10.1016/S1074-5521(00)90065-6
          11251288
          b7717183-fe5e-4b04-8c8a-cffab3756800
          © 2001

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://www.elsevier.com/open-access/userlicense/1.0/

          History

          Comments

          Comment on this article