13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Free-standing plasmonic metal-dielectric-metal bandpass filter with high transmission efficiency

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmonic spectrum filtering devices based on metallic nanostructures have attracted wide attention due to their good reliability, ease of fabrication, and wideband tunability. However, the presence of thick substrate significantly limits the structure’s longitudinal size for further optoelectronic integration and reduces the devices’ performance. Here we propose and demonstrate an ultra-thin plasmonic bandpass filter based on free-standing periodic metal-dielectric-metal stack geometry working in the near-infrared wavelength range. The coupling between free-space electromagnetic waves and spatially confined plasmonic modes in the designed structure is systematically investigated. As demonstrated in the calculation and experiment, the free-standing plasmonic filters have more than 90% transmission efficiency and superior angular tolerance. The experimental results are in good agreement with the theoretical calculations. These artificial nanostructured filtering devices may find potential applications in the extremely compact device architectures.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Optical Constants of the Noble Metals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surface plasmon subwavelength optics.

            Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Channel plasmon subwavelength waveguide components including interferometers and ring resonators.

              Photonic components are superior to electronic ones in terms of operational bandwidth, but the diffraction limit of light poses a significant challenge to the miniaturization and high-density integration of optical circuits. The main approach to circumvent this problem is to exploit the hybrid nature of surface plasmon polaritons (SPPs), which are light waves coupled to free electron oscillations in a metal that can be laterally confined below the diffraction limit using subwavelength metal structures. However, the simultaneous realization of strong confinement and a propagation loss sufficiently low for practical applications has long been out of reach. Channel SPP modes--channel plasmon polaritons (CPPs)--are electromagnetic waves that are bound to and propagate along the bottom of V-shaped grooves milled in a metal film. They are expected to exhibit useful subwavelength confinement, relatively low propagation loss, single-mode operation and efficient transmission around sharp bends. Our previous experiments showed that CPPs do exist and that they propagate over tens of micrometres along straight subwavelength grooves. Here we report the design, fabrication and characterization of CPP-based subwavelength waveguide components operating at telecom wavelengths: Y-splitters, Mach-Zehnder interferometers and waveguide-ring resonators. We demonstrate that CPP guides can indeed be used for large-angle bending and splitting of radiation, thereby enabling the realization of ultracompact plasmonic components and paving the way for a new class of integrated optical circuits.
                Bookmark

                Author and article information

                Contributors
                caoxun@nju.edu.cn
                xuting@nju.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                28 June 2017
                28 June 2017
                2017
                : 7
                : 4357
                Affiliations
                [1 ]ISNI 0000 0001 2314 964X, GRID grid.41156.37, National Laboratory of Solid State Microstructures, , College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, ; 22 Hankou Road, Nanjing, 210093 China
                [2 ]ISNI 0000 0001 2314 964X, GRID grid.41156.37, School of Electronic Science and Engineering, , Nanjing University, ; 22 Hankou Road, Nanjing, 210093 China
                Article
                4540
                10.1038/s41598-017-04540-9
                5489537
                28659625
                b7742aaf-f382-4e2a-916e-8fdcc6b31c66
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 January 2017
                : 25 May 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article