51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population Structure and Evidence for Both Clonality and Recombination among Brazilian Strains of the Subgenus Leishmania ( Viannia)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Objectives: Parasites of the subgenus Leishmania (Viannia) cause varying clinical symptoms ranging from cutaneous leishmaniases (CL) with single or few lesions, disseminated CL (DL) with multiple lesions to disfiguring forms of mucocutaneous leishmaniasis (MCL). In this population genetics study, 37 strains of L. (V.) guyanensis, 63 of L. (V.) braziliensis, four of L. (V.) shawi, six of L. (V.) lainsoni, seven of L. (V.) naiffi, one each of L. (V.) utingensis and L. (V.) lindenbergi, and one L. (V.) lainsoni/ L. naiffi hybrid from different endemic foci in Brazil were examined for variation at 15 hyper-variable microsatellite markers.

          Methodology/Principal findings: The multilocus microsatellite profiles obtained for the 120 strains were analysed using both model- and distance-based methods. Significant genetic diversity was observed for all L. (Viannia) strains studied. The two cluster analysis approaches identified two principal genetic groups or populations, one consisting of strains of L. (V.) guyanensis from the Amazon region and the other of strains of L. (V.) braziliensis isolated along the Atlantic coast of Brazil. A third group comprised a heterogeneous assembly of species, including other strains of L. braziliensis isolated from the north of Brazil, which were extremely polymorphic. The latter strains seemed to be more closely related to those of L. (V.) shawi, L. (V.) naiffi, and L. (V.) lainsoni, also isolated in northern Brazilian foci. The MLMT approach identified an epidemic clone consisting of 13 strains of L. braziliensis from Minas Gerais, but evidence for recombination was obtained for the populations of L. (V.) braziliensis from the Atlantic coast and for L. (V.) guyanensis.

          Conclusions/Significance: Different levels of recombination versus clonality seem to occur within the subgenus L. ( Viannia). Though clearly departing from panmixia, sporadic, but long-term sustained recombination might explain the tremendous genetic diversity and limited population structure found for such L. ( Viannia) strains.

          Author Summary

          Cutaneous leishmaniasis (CL) constitutes a significant public health problem in all federal states of Brazil. Most cases are caused by parasites of the subgenus Leishmania (Viannia) which can cause a variety of clinical symptoms ranging from single or few lesions, disseminated CL with multiple lesions, to disfiguring forms of mucocutaneous leishmaniasis. This study has used a multilocus microsatellite typing approach for exploring the genetic diversity and population structure among 120 strains representing different subgenus L. (Viannia) species and different Brazilian CL foci. Genetic diversity within the subgenus was much higher than expected, especially within L. (V.) braziliensis, L. (V.) shawi, L. (V.) naiffi, and L. (V.) lainsoni which were all from the north of Brazil. These strains could not be assigned to well-defined populations, but presented a rather loosely associated group. Strains of L. (V.) braziliensis isolated along the Atlantic coast of Brazil and strains of L. (V.) guyanensis formed, however, two clearly separated populations exhibiting remarkable levels of sexual exchange. The latter finding is in contrast to previous studies suggesting clonal modes of propagation or inbreeding for natural populations of Leishmania parasites and might explain the genetic heterogeneity and limited population structure for Brazilian strains of subgenus L. ( Viannia) observed in this study.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Arlequin (version 3.0): An integrated software package for population genetics data analysis

          Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multi-locus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neighbor-net: an agglomerative method for the construction of phylogenetic networks.

            We present Neighbor-Net, a distance based method for constructing phylogenetic networks that is based on the Neighbor-Joining (NJ) algorithm of Saitou and Nei. Neighbor-Net provides a snapshot of the data that can guide more detailed analysis. Unlike split decomposition, Neighbor-Net scales well and can quickly produce detailed and informative networks for several hundred taxa. We illustrate the method by reanalyzing three published data sets: a collection of 110 highly recombinant Salmonella multi-locus sequence typing sequences, the 135 "African Eve" human mitochondrial sequences published by Vigilant et al., and a collection of 12 Archeal chaperonin sequences demonstrating strong evidence for gene conversion. Neighbor-Net is available as part of the SplitsTree4 software package.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How clonal are bacteria?

              Data from multilocus enzyme electrophoresis of bacterial populations were analyzed using a statistical test designed to detect associations between genes at different loci. Some species (e.g., Salmonella) were found to be clonal at all levels of analysis. At the other extreme, Neisseria gonorrhoeae is panmictic, with random association between loci. Two intermediate types of population structure were also found. Neisseria meningitidis displays what we have called an "epidemic" structure. There is significant association between loci, but this arises only because of the recent, explosive, increase in particular electrophoretic types; when this effect is eliminated the population is found to be effectively panmictic. In contrast, linkage disequilibrium in a population of Rhizobium meliloti exists because the sample consisted of two genetically isolated divisions, often fixed for different alleles: within each division association between loci was almost random. The method of analysis is appropriate whenever there is doubt about the extent of genetic recombination between members of a population. To illustrate this we analyzed data on protozoan parasites and again found panmictic, epidemic, and clonal population structures.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                October 2013
                31 October 2013
                : 7
                : 10
                : e2490
                Affiliations
                [1 ]Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
                [2 ]Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
                [3 ]Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
                [4 ]Instituto de Higiene e Medicina Tropical, Lisboa, Portugal
                [5 ]Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
                [6 ]Ecole Pratique des Hautes Etudes, Muséum National d'Histoire Naturelle, Département de Systématique et Évolution, UMR-CNRS 7205, Paris, France
                University of Montpellier, France
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GS KK EC MM IM TW MNM. Performed the experiments: KK CS SOS MCB. Analyzed the data: KK CS TW SOS EC MCB GS. Contributed reagents/materials/analysis tools: EC MNM IM TW GS. Wrote the paper: GS KK MM EC TW.

                [¤]

                Current address: Molecular Biotechnology and Functional Genomics, University of Applied Sciences Wildau, Germany.

                Article
                PNTD-D-12-01546
                10.1371/journal.pntd.0002490
                3814519
                24205418
                b77e84fe-5045-4416-acf7-c8e4e288458f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 November 2012
                : 8 September 2013
                Page count
                Pages: 14
                Funding
                This work was supported by grants from the EU (INCO-CT2005-015407) and from the Brazilian financial agencies CNPq (304683/2009-4; 476727/2010-3; 400132/2011-7), FAPERJ (CNE-E-26/101.535/2010), FINEP (Sicol IV-01.06.1227.00), and FAPEMIG (CBB - APQ-01123-09). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article