4
views
0
recommends
+1 Recommend
4 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      COVID-19 Infection and Neurological Complications: Present Findings and Future Predictions

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present outbreak caused by SARS-CoV-2, an influenza virus with neurotropic potential, presents with neurological manifestations in a large proportion of the affected individuals. Disorders of the central and peripheral nervous system are all present, while stroke, ataxia, seizures, and depressed level of consciousness are more common in severely affected patients. People with these severe complications are most likely elderly with medical comorbidities, especially hypertension and other vascular risk factors. However, postinfectious complications are also expected. Neurological disorders as sequelae of influenza viruses have been repeatedly documented in the past and include symptoms, signs, and diseases occurring during the acute phase and, not rarely, during follow-up. Postinfectious neurological complications are the result of the activation of immune mechanisms and can explain the insurgence of immune-mediated diseases, including the Guillain-Barré syndrome and other diseases of the central and peripheral nervous system that in the past occurred as complications of viral infections and occasionally with vaccines. For these reasons, the present outbreak calls for the introduction of surveillance systems to monitor changes in the frequency of several immune-mediated neurological diseases. These changes will determine a reorganization of the measures apt to describe the interaction between the virus, the environment, and the host in areas of different dimensions, from local communities to regions with several millions of inhabitants. The public health system, mainly primary care, needs to be strengthened to ensure that research and development efforts are directed toward right needs and directions. To cope with the present pandemic, better collaboration is required between international organizations along with more research funding, and tools in order to detect, treat, and prevent future epidemics.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: not found

          Incidence of thrombotic complications in critically ill ICU patients with COVID-19

          Introduction COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, hypoxia, immobilisation and diffuse intravascular coagulation. Reports on the incidence of thrombotic complications are however not available. Methods We evaluated the incidence of the composite outcome of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction or systemic arterial embolism in all COVID-19 patients admitted to the ICU of 2 Dutch university hospitals and 1 Dutch teaching hospital. Results We studied 184 ICU patients with proven COVID-19 pneumonia of whom 23 died (13%), 22 were discharged alive (12%) and 139 (76%) were still on the ICU on April 5th 2020. All patients received at least standard doses thromboprophylaxis. The cumulative incidence of the composite outcome was 31% (95%CI 20-41), of which CTPA and/or ultrasonography confirmed VTE in 27% (95%CI 17-37%) and arterial thrombotic events in 3.7% (95%CI 0-8.2%). PE was the most frequent thrombotic complication (n = 25, 81%). Age (adjusted hazard ratio (aHR) 1.05/per year, 95%CI 1.004-1.01) and coagulopathy, defined as spontaneous prolongation of the prothrombin time > 3 s or activated partial thromboplastin time > 5 s (aHR 4.1, 95%CI 1.9-9.1), were independent predictors of thrombotic complications. Conclusion The 31% incidence of thrombotic complications in ICU patients with COVID-19 infections is remarkably high. Our findings reinforce the recommendation to strictly apply pharmacological thrombosis prophylaxis in all COVID-19 patients admitted to the ICU, and are strongly suggestive of increasing the prophylaxis towards high-prophylactic doses, even in the absence of randomized evidence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurologic Features in Severe SARS-CoV-2 Infection

            To the Editor: We report the neurologic features in an observational series of 58 of 64 consecutive patients admitted to the hospital because of acute respiratory distress syndrome (ARDS) due to Covid-19. The patients received similar evaluations by intensivists in two intensive care units (ICUs) in Strasbourg, France, between March 3 and April 3, 2020. Six patients were excluded because of paralytic neuromuscular blockade when neurologic data were collected or because they had died without a neurologic examination having been performed. In all 58 patients, reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assays of nasopharyngeal samples were positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The median age of the patients was 63 years, and the median Simplified Acute Physiology Score II at the time of neurologic examination was 52 (interquartile range, 37 to 65, on a scale ranging from 0 to 163, with higher scores indicating greater severity of illness). Seven patients had had previous neurologic disorders, including transient ischemic attack, partial epilepsy, and mild cognitive impairment. The neurologic findings were recorded in 8 of the 58 patients (14%) on admission to the ICU (before treatment) and in 39 patients (67%) when sedation and a neuromuscular blocker were withheld. Agitation was present in 40 patients (69%) when neuromuscular blockade was discontinued (Table 1). A total of 26 of 40 patients were noted to have confusion according to the Confusion Assessment Method for the ICU; those patients could be evaluated when they were responsive (i.e., they had a score of −1 to 1 on the Richmond Agitation and Sedation Scale, on a scale of −5 [unresponsive] to +4 [combative]). Diffuse corticospinal tract signs with enhanced tendon reflexes, ankle clonus, and bilateral extensor plantar reflexes were present in 39 patients (67%). Of the patients who had been discharged at the time of this writing, 15 of 45 (33%) had had a dysexecutive syndrome consisting of inattention, disorientation, or poorly organized movements in response to command. Magnetic resonance imaging (MRI) of the brain was performed in 13 patients (Figs. S1 through S3 in the Supplementary Appendix, available with the full text of this letter at NEJM.org). Although these patients did not have focal signs that suggested stroke, they underwent MRI because of unexplained encephalopathic features. Enhancement in leptomeningeal spaces was noted in 8 patients, and bilateral frontotemporal hypoperfusion was noted in all 11 patients who underwent perfusion imaging. Two asymptomatic patients each had a small acute ischemic stroke with focal hyperintensity on diffusion-weighted imaging and an overlapping decreased apparent diffusion coefficient, and 1 patient had a subacute ischemic stroke with superimposed increased diffusion-weighted imaging and apparent diffusion coefficient signals. In the 8 patients who underwent electroencephalography, only nonspecific changes were detected; 1 of the 8 patients had diffuse bifrontal slowing consistent with encephalopathy. Examination of cerebrospinal fluid (CSF) samples obtained from 7 patients showed no cells; in 2 patients, oligoclonal bands were present with an identical electrophoretic pattern in serum, and protein and IgG levels were elevated in 1 patient. RT-PCR assays of the CSF samples were negative for SARS-CoV-2 in all 7 patients. In this consecutive series of patients, ARDS due to SARS-CoV-2 infection was associated with encephalopathy, prominent agitation and confusion, and corticospinal tract signs. Two of 13 patients who underwent brain MRI had single acute ischemic strokes. Data are lacking to determine which of these features were due to critical illness–related encephalopathy, cytokines, or the effect or withdrawal of medication, and which features were specific to SARS-CoV-2 infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study

              Abstract Objective To delineate the clinical characteristics of patients with coronavirus disease 2019 (covid-19) who died. Design Retrospective case series. Setting Tongji Hospital in Wuhan, China. Participants Among a cohort of 799 patients, 113 who died and 161 who recovered with a diagnosis of covid-19 were analysed. Data were collected until 28 February 2020. Main outcome measures Clinical characteristics and laboratory findings were obtained from electronic medical records with data collection forms. Results The median age of deceased patients (68 years) was significantly older than recovered patients (51 years). Male sex was more predominant in deceased patients (83; 73%) than in recovered patients (88; 55%). Chronic hypertension and other cardiovascular comorbidities were more frequent among deceased patients (54 (48%) and 16 (14%)) than recovered patients (39 (24%) and 7 (4%)). Dyspnoea, chest tightness, and disorder of consciousness were more common in deceased patients (70 (62%), 55 (49%), and 25 (22%)) than in recovered patients (50 (31%), 48 (30%), and 1 (1%)). The median time from disease onset to death in deceased patients was 16 (interquartile range 12.0-20.0) days. Leukocytosis was present in 56 (50%) patients who died and 6 (4%) who recovered, and lymphopenia was present in 103 (91%) and 76 (47%) respectively. Concentrations of alanine aminotransferase, aspartate aminotransferase, creatinine, creatine kinase, lactate dehydrogenase, cardiac troponin I, N-terminal pro-brain natriuretic peptide, and D-dimer were markedly higher in deceased patients than in recovered patients. Common complications observed more frequently in deceased patients included acute respiratory distress syndrome (113; 100%), type I respiratory failure (18/35; 51%), sepsis (113; 100%), acute cardiac injury (72/94; 77%), heart failure (41/83; 49%), alkalosis (14/35; 40%), hyperkalaemia (42; 37%), acute kidney injury (28; 25%), and hypoxic encephalopathy (23; 20%). Patients with cardiovascular comorbidity were more likely to develop cardiac complications. Regardless of history of cardiovascular disease, acute cardiac injury and heart failure were more common in deceased patients. Conclusion Severe acute respiratory syndrome coronavirus 2 infection can cause both pulmonary and systemic inflammation, leading to multi-organ dysfunction in patients at high risk. Acute respiratory distress syndrome and respiratory failure, sepsis, acute cardiac injury, and heart failure were the most common critical complications during exacerbation of covid-19.
                Bookmark

                Author and article information

                Journal
                Neuroepidemiology
                Neuroepidemiology
                NED
                Neuroepidemiology
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.com )
                0251-5350
                1423-0208
                1 July 2020
                : 1-6
                Affiliations
                aDepartment of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
                bNational Institute for Stroke and Applied Neurosciences School of Public Health and Psychosocial Studies Faculty of Health and Environmental Sciences AUT University Auckland, Auckland, New Zealand
                cStroke Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
                dAzienda Sanitaria Provinciale-Ragusa, Ragusa, Italy
                eCenter for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari “Aldo Moro”Bari, “Pia Fondazione Cardinale G. Panico”, Tricase, Italy
                Author notes
                *Ettore Beghi, Laboratory of Neurological Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, IT–20156 Milan (Italy), ettore.beghi@ 123456marionegri.it
                Article
                ned-0001
                10.1159/000508991
                7445369
                32610334
                Copyright © 2020 by S. Karger AG, Basel

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                Page count
                References: 48, Pages: 6
                Categories
                Review

                Neurosciences

                infection, coronavirus, neurological disorders, outbreak

                Comments

                Comment on this article