16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      gamma-tocopherol and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells.

      Proceedings of the National Academy of Sciences of the United States of America
      Arachidonic Acids, metabolism, Cell Line, Cyclooxygenase Inhibitors, pharmacology, Epithelial Cells, drug effects, enzymology, Humans, Interleukin-1, Isomerism, Lipopolysaccharides, Macrophages, Nitric Oxide Synthase, Nitric Oxide Synthase Type II, Nitrites, Reactive Oxygen Species, Vitamin E, chemistry

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyclooxygenase-2 (COX-2)-catalyzed synthesis of prostaglandin E(2) (PGE(2)) plays a key role in inflammation and its associated diseases, such as cancer and vascular heart disease. Here we report that gamma-tocopherol (gammaT) reduced PGE(2) synthesis in both lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and IL-1beta-treated A549 human epithelial cells with an apparent IC(50) of 7.5 and 4 microM, respectively. The major metabolite of dietary gammaT, 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), also exhibited an inhibitory effect, with an IC(50) of approximately 30 microM in these cells. In contrast, alpha-tocopherol at 50 microM slightly reduced (25%) PGE(2) formation in macrophages, but had no effect in epithelial cells. The inhibitory effects of gammaT and gamma-CEHC stemmed from their inhibition of COX-2 activity, rather than affecting protein expression or substrate availability, and appeared to be independent of antioxidant activity. gamma-CEHC also inhibited PGE(2) synthesis when exposed for 1 h to COX-2-preinduced cells followed by the addition of arachidonic acid (AA), whereas under similar conditions, gammaT required an 8- to 24-h incubation period to cause the inhibition. The inhibitory potency of gammaT and gamma-CEHC was diminished by an increase in AA concentration, suggesting that they might compete with AA at the active site of COX-2. We also observed a moderate reduction of nitrite accumulation and suppression of inducible nitric oxide synthase expression by gammaT in lipopolysaccharide-treated macrophages. These findings indicate that gammaT and its major metabolite possess anti-inflammatory activity and that gammaT at physiological concentrations may be important in human disease prevention.

          Related collections

          Author and article information

          Comments

          Comment on this article

          Related Documents Log