10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Asymptomatic SARS Coronavirus 2 infection: Invisible yet invincible

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Studies confirm the existence of transmission by asymptomatic individuals.

          • Characteristics of asymptomatic and presymptomatic infection are not identical.

          • Younger age correlates strongly with asymptomatic and mild infections.

          • The estimated proportion of asymptomatic infections ranges from 18% to 81%.

          • Asymptomatic infections does not provide clear guidance for public-health measures.

          • Asymptomatic cases should be reported in official COVID-19 statistics.

          • Asymptomatic individuals carrying SARS-CoV-2 are hidden drivers of the pandemic.

          Abstract

          While successful containment measures of COVID-19 in China and many European countries have led to flattened curves, case numbers are rising dramatically in other countries, with the emergence of a second wave expected. Asymptomatic individuals carrying SARS-CoV-2 are hidden drivers of the pandemic, and infectivity studies confirm the existence of transmission by asymptomatic individuals. The data addressed here show that characteristics of asymptomatic and presymptomatic infection are not identical. Younger age correlates strongly with asymptomatic and mild infections, and children as hidden drivers. The estimated proportion of asymptomatic infections ranges from 18% to 81%. The current perception of asymptomatic infections does not provide clear guidance for public-health measures. Asymptomatic infections will be a key contributor in COVID-19 spread. Asymptomatic cases should be reported in official COVID-19 statistics.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients

            To the Editor: The 2019 novel coronavirus (SARS-CoV-2) epidemic, which was first reported in December 2019 in Wuhan, China, and has been declared a public health emergency of international concern by the World Health Organization, may progress to a pandemic associated with substantial morbidity and mortality. SARS-CoV-2 is genetically related to SARS-CoV, which caused a global epidemic with 8096 confirmed cases in more than 25 countries in 2002–2003. 1 The epidemic of SARS-CoV was successfully contained through public health interventions, including case detection and isolation. Transmission of SARS-CoV occurred mainly after days of illness 2 and was associated with modest viral loads in the respiratory tract early in the illness, with viral loads peaking approximately 10 days after symptom onset. 3 We monitored SARS-CoV-2 viral loads in upper respiratory specimens obtained from 18 patients (9 men and 9 women; median age, 59 years; range, 26 to 76) in Zhuhai, Guangdong, China, including 4 patients with secondary infections (1 of whom never had symptoms) within two family clusters (Table S1 in the Supplementary Appendix, available with the full text of this letter at NEJM.org). The patient who never had symptoms was a close contact of a patient with a known case and was therefore monitored. A total of 72 nasal swabs (sampled from the mid-turbinate and nasopharynx) (Figure 1A) and 72 throat swabs (Figure 1B) were analyzed, with 1 to 9 sequential samples obtained from each patient. Polyester flock swabs were used for all the patients. From January 7 through January 26, 2020, a total of 14 patients who had recently returned from Wuhan and had fever (≥37.3°C) received a diagnosis of Covid-19 (the illness caused by SARS-CoV-2) by means of reverse-transcriptase–polymerase-chain-reaction assay with primers and probes targeting the N and Orf1b genes of SARS-CoV-2; the assay was developed by the Chinese Center for Disease Control and Prevention. Samples were tested at the Guangdong Provincial Center for Disease Control and Prevention. Thirteen of 14 patients with imported cases had evidence of pneumonia on computed tomography (CT). None of them had visited the Huanan Seafood Wholesale Market in Wuhan within 14 days before symptom onset. Patients E, I, and P required admission to intensive care units, whereas the others had mild-to-moderate illness. Secondary infections were detected in close contacts of Patients E, I, and P. Patient E worked in Wuhan and visited his wife (Patient L), mother (Patient D), and a friend (Patient Z) in Zhuhai on January 17. Symptoms developed in Patients L and D on January 20 and January 22, respectively, with viral RNA detected in their nasal and throat swabs soon after symptom onset. Patient Z reported no clinical symptoms, but his nasal swabs (cycle threshold [Ct] values, 22 to 28) and throat swabs (Ct values, 30 to 32) tested positive on days 7, 10, and 11 after contact. A CT scan of Patient Z that was obtained on February 6 was unremarkable. Patients I and P lived in Wuhan and visited their daughter (Patient H) in Zhuhai on January 11 when their symptoms first developed. Fever developed in Patient H on January 17, with viral RNA detected in nasal and throat swabs on day 1 after symptom onset. We analyzed the viral load in nasal and throat swabs obtained from the 17 symptomatic patients in relation to day of onset of any symptoms (Figure 1C). Higher viral loads (inversely related to Ct value) were detected soon after symptom onset, with higher viral loads detected in the nose than in the throat. Our analysis suggests that the viral nucleic acid shedding pattern of patients infected with SARS-CoV-2 resembles that of patients with influenza 4 and appears different from that seen in patients infected with SARS-CoV. 3 The viral load that was detected in the asymptomatic patient was similar to that in the symptomatic patients, which suggests the transmission potential of asymptomatic or minimally symptomatic patients. These findings are in concordance with reports that transmission may occur early in the course of infection 5 and suggest that case detection and isolation may require strategies different from those required for the control of SARS-CoV. How SARS-CoV-2 viral load correlates with culturable virus needs to be determined. Identification of patients with few or no symptoms and with modest levels of detectable viral RNA in the oropharynx for at least 5 days suggests that we need better data to determine transmission dynamics and inform our screening practices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temporal dynamics in viral shedding and transmissibility of COVID-19

              We report temporal patterns of viral shedding in 94 patients with laboratory-confirmed COVID-19 and modeled COVID-19 infectiousness profiles from a separate sample of 77 infector-infectee transmission pairs. We observed the highest viral load in throat swabs at the time of symptom onset, and inferred that infectiousness peaked on or before symptom onset. We estimated that 44% (95% confidence interval, 25-69%) of secondary cases were infected during the index cases' presymptomatic stage, in settings with substantial household clustering, active case finding and quarantine outside the home. Disease control measures should be adjusted to account for probable substantial presymptomatic transmission.
                Bookmark

                Author and article information

                Journal
                Int J Infect Dis
                Int. J. Infect. Dis
                International Journal of Infectious Diseases
                The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
                1201-9712
                1878-3511
                3 September 2020
                3 September 2020
                Affiliations
                [a ]Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
                [b ]Vietnamese-German Center for Medical Research, Hanoi, Viet Nam
                [c ]Faculty of Medicine, Duy Tan University, Da Nang, Viet Nam
                [d ]Centre de Recherches Medicales de Lambarene, Gabon
                Author notes
                [* ]Corresponding author at: Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany.
                Article
                S1201-9712(20)30706-2
                10.1016/j.ijid.2020.08.076
                7470698
                32891737
                b7be204f-9826-4451-8300-f1b3a3b6ed69
                © 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 7 July 2020
                : 26 August 2020
                : 28 August 2020
                Categories
                Article

                Infectious disease & Microbiology
                asymptomatic,presymptomatic,case definition,covid-19,sars-cov-2,herd immunity

                Comments

                Comment on this article