51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NUP-1 Is a Large Coiled-Coil Nucleoskeletal Protein in Trypanosomes with Lamin-Like Functions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NUP1, the first example of a nuclear lamin analog in nonmetazoans, performs roles similar to those of lamins in maintaining the structure and organization of the nucleus in Trypanosoma brucei.

          Abstract

          A unifying feature of eukaryotic nuclear organization is genome segregation into transcriptionally active euchromatin and transcriptionally repressed heterochromatin. In metazoa, lamin proteins preserve nuclear integrity and higher order heterochromatin organization at the nuclear periphery, but no non-metazoan lamin orthologues have been identified, despite the likely presence of nucleoskeletal elements in many lineages. This suggests a metazoan-specific origin for lamins, and therefore that distinct protein elements must compose the nucleoskeleton in other lineages. The trypanosomatids are highly divergent organisms and possess well-documented but remarkably distinct mechanisms for control of gene expression, including polycistronic transcription and trans-splicing. NUP-1 is a large protein localizing to the nuclear periphery of Trypanosoma brucei and a candidate nucleoskeletal component. We sought to determine if NUP-1 mediates heterochromatin organization and gene regulation at the nuclear periphery by examining the influence of NUP-1 knockdown on morphology, chromatin positioning, and transcription. We demonstrate that NUP-1 is essential and part of a stable network at the inner face of the trypanosome nuclear envelope, since knockdown cells have abnormally shaped nuclei with compromised structural integrity. NUP-1 knockdown also disrupts organization of nuclear pore complexes and chromosomes. Most significantly, we find that NUP-1 is required to maintain the silenced state of developmentally regulated genes at the nuclear periphery; NUP-1 knockdown results in highly specific mis-regulation of telomere-proximal silenced variant surface glycoprotein ( VSG) expression sites and procyclin loci, indicating a disruption to normal chromatin organization essential to life-cycle progression. Further, NUP-1 depletion leads to increased VSG switching and therefore appears to have a role in control of antigenic variation. Thus, analogous to vertebrate lamins, NUP-1 is a major component of the nucleoskeleton with key roles in organization of the nuclear periphery, heterochromatin, and epigenetic control of developmentally regulated loci.

          Author Summary

          Eukaryotes—fungi, plants, animals, and many unicellular organisms—are defined by the presence of a cell nucleus that contains the chromosomes and is enveloped by a lipid membrane lined on the inner face with a protein network called the lamina. Among other functions, the lamina serves as an anchorage site for the ends of chromosomes. In multicellular animals (metazoa), the lamina comprises a few related proteins called lamins, which are very important for many functions related to the nucleus; abnormal lamins result in multiple nuclear defects and diseases, including inappropriate gene expression and premature aging. Until now, however, lamins had been found only in metazoa; no protein of equivalent function had been identified in plants, fungi, or unicellular organisms. Here, we describe a protein from African trypanosomes—the single-cell parasites that cause sleeping sickness—that fulfils many lamin-like roles, including maintaining nuclear structure and organizing the chromosomes of this organism. We show that this protein, which we call NUP-1 for nuclear periphery protein-1, is vital for the antigenic variation mechanisms that allow the parasite to escape the host immune response. We propose that NUP-1 is a lamin analogue that performs similar functions in trypanosomes to those of authentic lamins in metazoa. These findings, we believe, have important implications for understanding the evolution of the nucleus.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          The genome of the African trypanosome Trypanosoma brucei.

          African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei.

            First-generation inducible expression vectors for Trypanosoma brucei utilized a single tetracycline-responsive promoter to drive expression of an experimental gene, in tandem with a drug-resistance marker gene to select for integration (Wirtz E, Clayton CE. Science 1995; 268:1179-1183). Because drug resistance and experimental gene expression both depended upon the activity of the regulated promoter, this approach could not be used for inducible expression of toxic products. We have now developed a dual-promoter approach, for expressing highly toxic products and generating conditional gene knock-outs, using back-to-back constitutive T7 and tetracycline-responsive PARP promoters to drive expression of the selectable marker and test gene, respectively. Transformants are readily obtained with these vectors in the absence of tetracycline, in bloodstream or procyclic T. brucei cell lines co-expressing T7 RNA polymerase and Tet repressor, and consistently show tetracycline-responsive expression through a 10(3)-10(4)-fold range. Uninduced background expression of a luciferase reporter averages no more than one molecule per cell, enabling dominant-negative approaches relying upon inducible expression of toxic products. This tight regulation also permits the production of functional gene knock-outs through regulated expression of an experimental gene in a null-mutant background.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication.

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                March 2012
                March 2012
                27 March 2012
                : 10
                : 3
                : e1001287
                Affiliations
                [1 ]Department of Pathology, University of Cambridge, Cambridge, United Kingdom
                [2 ]London School of Hygiene & Tropical Medicine, London, United Kingdom
                [3 ]Trypanosome Cell Biology Unit, Pasteur Institute and Centre National de la Recherche Scientifique, Paris, France
                [4 ]Wellcome Trust Center for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
                [5 ]Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Cientificas, Granada, Spain
                [6 ]The Institute for Systems Biology, Seattle, Washington, United States of America
                [7 ]Seattle Biomedical Research Institute, Seattle, Washington, United States of America
                [8 ]The Rockefeller University, New York, New York, United States of America
                National Cancer Institute, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: KND SA PB JDB MN DH JDA MPR MCF. Performed the experiments: KND SA JMH JB MS JB AVR YW. Analyzed the data: KND SA JMH JB MS JB AVR YW PB JDB MN DH JDA MPR MCF. Wrote the paper: KND SA PB JDB MN DH JDA MPR MCF.

                ¤: Current address: The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, China

                Article
                PBIOLOGY-D-11-04313
                10.1371/journal.pbio.1001287
                3313915
                22479148
                b7c451ce-9a27-45e0-a392-6ef739d7ff1d
                DuBois et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 25 October 2011
                : 7 February 2012
                Page count
                Pages: 20
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Genetics
                Microbiology
                Molecular Cell Biology

                Life sciences
                Life sciences

                Comments

                Comment on this article