33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional responses of Arabidopsis thaliana plants to As (V) stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V)] and phosphate (Pi). Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V) stress.

          Results

          Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases) play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD) (at2g28190), Cu/Zn SOD (at1g08830), as well as an SOD copper chaperone (at1g12520). On the other hand, Fe SODs were strongly repressed in response to As (V) stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays.

          Conclusion

          Microarray data suggest that As (V) induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V) as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments.

            One of the main objectives in the analysis of microarray experiments is the identification of genes that are differentially expressed under two experimental conditions. This task is complicated by the noisiness of the data and the large number of genes that are examined simultaneously. Here, we present a novel technique for identifying differentially expressed genes that does not originate from a sophisticated statistical model but rather from an analysis of biological reasoning. The new technique, which is based on calculating rank products (RP) from replicate experiments, is fast and simple. At the same time, it provides a straightforward and statistically stringent way to determine the significance level for each gene and allows for the flexible control of the false-detection rate and familywise error rate in the multiple testing situation of a microarray experiment. We use the RP technique on three biological data sets and show that in each case it performs more reliably and consistently than the non-parametric t-test variant implemented in Tusher et al.'s significance analysis of microarrays (SAM). We also show that the RP results are reliable in highly noisy data. An analysis of the physiological function of the identified genes indicates that the RP approach is powerful for identifying biologically relevant expression changes. In addition, using RP can lead to a sharp reduction in the number of replicate experiments needed to obtain reproducible results.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling.

                Bookmark

                Author and article information

                Journal
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2008
                6 August 2008
                : 8
                : 87
                Affiliations
                [1 ]Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Blvd., Knoxville, TN 37996-4561, USA
                [2 ]Biology Department, St. Ambrose University, 518 West Locust St., Davenport, IA 52803, USA
                [3 ]Department of Animal Science, University of Tennessee, 2505 River Dr., Knoxville, TN 37996-4561, USA
                Article
                1471-2229-8-87
                10.1186/1471-2229-8-87
                2547109
                18684332
                b7cd4736-b635-4b71-9f4d-c856d0a4a97c
                Copyright © 2008 Abercrombie et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 October 2007
                : 6 August 2008
                Categories
                Research Article

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article