36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The proto-oncogene KRAS is targeted by miR-200c

      research-article
      1 , 1 , 1
      Oncotarget
      Impact Journals LLC
      breast cancer, lung cancer, miRNA, K-ras, cell cycle, proliferation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The GTPase K-ras is involved in a variety of cellular processes such as differentiation, proliferation and survival. However, activating mutations, which frequently occur in many types of cancer, turn KRAS into one of the most prominent oncogenes. Likewise, miR-200c is a key player in tumorigenesis functioning as a molecular switch between an epithelial, non-migratory, chemosensitive and a mesenchymal, migratory, chemoresistant state. While it has been reported that KRAS is modulated by several tumor suppressor miRNAs, this is the first report on the regulation of KRAS by miR-200c, both playing a pivotal role in oncogenesis. We show that KRAS is a predicted target of miR-200c and that the protein expression of KRAS inversely correlates with the miR-200c expression in a panel of human breast cancer cell lines. KRAS was experimentally validated as a target of miR-200c by Western blot analyses and luciferase reporter assays. Furthermore, the inhibitory rffect of miR-200c-dependent KRAS silencing on proliferation and cell cycle was demonstrated in dfferent breast and lung cancer cell lines. Thereby, the particular role of KRAS was dissected from the role of all the other miR-200c targets by specific knockdown experiments using siRNA against KRAS. Cell lines harboring an activating KRAS mutation were similarly affected by miR-200c as well as by the siRNA against KRAS. However, in a cell line with wild-type KRAS only miR-200c was able to change proliferation and cell cycle. Our findings suggest that miR-200c is a potent inhibitor of tumor progression and therapy resistance, by regulating a multitude of oncogenic pathways including the RAS pathway. Thus, miR-200c may cause stronger anti-tumor efffects than a specific siRNA against KRAS, emphasizing the potential role of miR-200c as tumor suppressive miRNA

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.

          MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3' untranslated regions of these messages had a significant propensity to pair to the 5' region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of mammalian microRNA targets.

            MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Suppression of non-small cell lung tumor development by the let-7 microRNA family.

              Many microRNAs (miRNAs) target mRNAs involved in processes aberrant in tumorigenesis, such as proliferation, survival, and differentiation. In particular, the let-7 miRNA family has been proposed to function in tumor suppression, because reduced expression of let-7 family members is common in non-small cell lung cancer (NSCLC). Here, we show that let-7 functionally inhibits non-small cell tumor development. Ectopic expression of let-7g in K-Ras(G12D)-expressing murine lung cancer cells induced both cell cycle arrest and cell death. In tumor xenografts, we observed significant growth reduction of both murine and human non-small cell lung tumors when overexpression of let-7g was induced from lentiviral vectors. In let-7g expressing tumors, reductions in Ras family and HMGA2 protein levels were detected. Importantly, let-7g-mediated tumor suppression was more potent in lung cancer cell lines harboring oncogenic K-Ras mutations than in lines with other mutations. Ectopic expression of K-Ras(G12D) largely rescued let-7g mediated tumor suppression, whereas ectopic expression of HMGA2 was less effective. Finally, in an autochthonous model of NSCLC in the mouse, let-7g expression substantially reduced lung tumor burden.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                January 2014
                24 November 2013
                : 5
                : 1
                : 185-195
                Affiliations
                1 Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
                Author notes
                Correspondence to: Andreas Roidl, andreas.roidl@ 123456cup.uni-muenchen.de
                Article
                3960200
                24368337
                b7cfb36c-9063-4560-a5d3-f1b3876fa554
                Copyright: © 2014 Kopp et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 September 2013
                : 22 November 2013
                Categories
                Research Paper

                Oncology & Radiotherapy
                breast cancer,lung cancer,mirna,k-ras,cell cycle,proliferation
                Oncology & Radiotherapy
                breast cancer, lung cancer, mirna, k-ras, cell cycle, proliferation

                Comments

                Comment on this article