7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      PROCEDURAL PAIN AND ORAL GLUCOSE IN PRETERM NEONATES : BRAIN DEVELOPMENT AND SEX-SPECIFIC EFFECTS

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our objectives were to determine whether procedural pain and glucose exposure are associated with altered structural and functional brain development differently in preterm males and females, and neurodevelopment at 18-month corrected age. Fifty-one very preterm neonates (22 males; median [interquartile range] gestational age 27.6 [2.0] weeks) underwent 3 serial scans including T1-weighted and resting-state functional magnetic resonance imaging (MRI) at median postmenstrual weeks: 29.4, 31.9, and 41.1. Thalamus, basal ganglia, and total brain volumes were segmented. Functional resting-state MRI data were extracted from the independent-components maps. Pain was operationalized as the total number of neonatal intensive care unit-administered invasive procedures. Neurodevelopmental outcomes at 18-month corrected age were assessed with the Bayley Scales of Infant Development, second edition. Generalized estimating equations assessed the association of pain and glucose exposure with brain structural and functional development. More invasive procedures were independently associated with slower growth of thalamic (P < 0.001), basal ganglia (P = 0.028), and total brain volumes (P = 0.001), particularly in females. Similar relationships were observed between glucose exposure and brain volumes. Functional connectivity between thalamus and sensorimotor cortices was negatively associated with number of invasive procedures. Greater procedural pain and higher glucose exposure were related to poorer neurodevelopmental outcomes. These findings suggest that structural and functional brain development is vulnerable to procedural pain. Glucose used for analgesia does not appear to mitigate the adverse impact of pain on brain development. The vulnerability of brain development in females towards early pain is distinct from other neonatal morbidities. The link between pain and glucose with neurodevelopment suggests that these factors have long-lasting impact.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Different immune cells mediate mechanical pain hypersensitivity in male and female mice.

          A large and rapidly increasing body of evidence indicates that microglia-to-neuron signaling is essential for chronic pain hypersensitivity. Using multiple approaches, we found that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieved similar levels of pain hypersensitivity using adaptive immune cells, likely T lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Pain and its effects in the human neonate and fetus.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Localization of pain-related brain activation: a meta-analysis of neuroimaging data.

              A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. The second analysis contrasted noxious cold with noxious heat stimulation and revealed higher likelihood of activation to noxious cold in the subgenual ACC and the amygdala. The third analysis assessed the implications of using either a warm stimulus or a resting baseline as the control condition to reveal activation attributed to noxious heat. Comparing noxious heat to warm stimulation led to peak ALE values that were restricted to cortical regions with known nociceptive input. The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated. Copyright © 2011 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                PAIN
                PAIN
                Ovid Technologies (Wolters Kluwer Health)
                0304-3959
                2018
                December 2017
                : 1
                Article
                10.1097/j.pain.0000000000001123
                29200180
                b7d069f7-644d-4cc4-9c97-a22353c35389
                © 2017
                History

                Comments

                Comment on this article