2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electroencephalography (EEG) signals are frequently contaminated with unwanted electrooculographic (EOG) artifacts. Blinks and eye movements generate large amplitude peaks that corrupt EEG measurements. Independent component analysis (ICA) has been used extensively in manual and automatic methods to remove artifacts. By decomposing the signals into neural and artifactual components and artifact components can be eliminated before signal reconstruction. Unfortunately, removing entire components may result in losing important neural information present in the component and eventually may distort the spectral characteristics of the reconstructed signals. An alternative approach is to correct artifacts within the independent components instead of rejecting the entire component, for which wavelet transform based decomposition methods have been used with good results. An improved, fully automatic wavelet-based component correction method is presented for EOG artifact removal that corrects EOG components selectively, i.e., within EOG activity regions only, leaving other parts of the component untouched. In addition, the method does not rely on reference EOG channels. The results show that the proposed method outperforms other component rejection and wavelet-based EOG removal methods in its accuracy both in the time and the spectral domain. The proposed new method represents an important step towards the development of accurate, reliable and automatic EOG artifact removal methods.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Removing electroencephalographic artifacts by blind source separation.

          Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of principal component analysis (PCA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based on blind source separation by independent component analysis (ICA). Our results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods. ICA can also be used to analyze blink-related brain activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features.

            Abstract A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific spatial and temporal features. Features were optimized to capture blinks, eye movements, and generic discontinuities on a feature selection dataset. Validation on a totally different EEG dataset shows that (1) ADJUST's classification of independent components largely matches a manual one by experts (agreement on 95.2% of the data variance), and (2) Removal of the artifacted components detected by ADJUST leads to neat reconstruction of visual and auditory event-related potentials from heavily artifacted data. These results demonstrate that ADJUST provides a fast, efficient, and automatic way to use ICA for artifact removal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection.

              Electroencephalogram (EEG) data are typically contaminated with artifacts (e.g., by eye movements). The effect of artifacts can be attenuated by deleting data with amplitudes over a certain value, for example. Independent component analysis (ICA) separates EEG data into neural activity and artifact; once identified, artifactual components can be deleted from the data. Often, artifact rejection algorithms require supervision (e.g., training using canonical artifacts). Many artifact rejection methods are time consuming when applied to high-density EEG data. We describe FASTER (Fully Automated Statistical Thresholding for EEG artifact Rejection). Parameters were estimated for various aspects of data (e.g., channel variance) in both the EEG time series and in the independent components of the EEG: outliers were detected and removed. FASTER was tested on both simulated EEG (n=47) and real EEG (n=47) data on 128-, 64-, and 32-scalp electrode arrays. FASTER was compared to supervised artifact detection by experts and to a variant of the Statistical Control for Dense Arrays of Sensors (SCADS) method. FASTER had >90% sensitivity and specificity for detection of contaminated channels, eye movement and EMG artifacts, linear trends and white noise. FASTER generally had >60% sensitivity and specificity for detection of contaminated epochs, vs. 0.15% for SCADS. FASTER also aggregates the ERP across subject datasets, and detects outlier datasets. The variance in the ERP baseline, a measure of noise, was significantly lower for FASTER than either the supervised or SCADS methods. ERP amplitude did not differ significantly between FASTER and the supervised approach. Copyright 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Brain Sci
                Brain Sci
                brainsci
                Brain Sciences
                MDPI
                2076-3425
                04 December 2019
                December 2019
                : 9
                : 12
                : 355
                Affiliations
                [1 ]Department of Electrical Engineering and Information Systems, Faculty of Information Technology, University of Pannonia, Egyetem u.10, 8200 Veszprém, Hungary; juhasz@ 123456virt.uni-pannon.hu
                [2 ]Department of Scientific Computing, Faculty of Computers and Informatics, Benha University, Fareed Nada, Benha 13511, Egypt
                Author notes
                Author information
                https://orcid.org/0000-0002-1436-2278
                https://orcid.org/0000-0003-0677-8588
                Article
                brainsci-09-00355
                10.3390/brainsci9120355
                6956025
                31817120
                b7f3d4f2-5bbc-44b2-ad7b-d73930e4760c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 September 2019
                : 02 December 2019
                Categories
                Article

                eeg,eog artifacts removal,independent component analysis,discrete wavelet transform (dwt)

                Comments

                Comment on this article