20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tai Chi Chuan and Baduanjin practice modulates functional connectivity of the cognitive control network in older adults

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cognitive impairment is one of the most common problem saffecting older adults. In this study, we investigated whether Tai Chi Chuan and Baduanjin practice can modulate mental control functionand the resting state functional connectivity (rsFC) of the cognitive control network in older adults. Participants in the two exercise groups practiced either Tai Chi Chuan or Baduanjin for 12 weeks, and those in the control group received basic health education. Memory tests and fMRI scans were conducted at baseline and at the end of the study. Seed-based (bilateral dorsolateral prefrontal cortex, DLPFC) rsFC analysis was performed. We found that compared to the controls, 1) both Tai Chi Chuan and Baduanjin groups demonstrated significant improvements in mental control function; 2) the Tai Chi Chuan group showed a significant decrease in rsFC between the DLPFC and the left superior frontal gyrus (SFG) and anterior cingulate cortex; and 3) the Baduanjin group showed a significant decrease in rsFC between the DLPFC and the left putamen and insula. Mental control improvement was negatively associated with rsFC DLPFC-putamen changes across all subjects. These findings demonstrate the potential of Tai Chi Chuan and Baduanjin exercises in preventing cognitive decline.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The cognitive control network: Integrated cortical regions with dissociable functions.

          Consensus across hundreds of published studies indicates that the same cortical regions are involved in many forms of cognitive control. Using functional magnetic resonance imaging (fMRI), we found that these coactive regions form a functionally connected cognitive control network (CCN). Network status was identified by convergent methods, including: high inter-regional correlations during rest and task performance, consistently higher correlations within the CCN than the rest of cortex, co-activation in a visual search task, and mutual sensitivity to decision difficulty. Regions within the CCN include anterior cingulate cortex/pre-supplementary motor area (ACC/pSMA), dorsolateral prefrontal cortex (DLPFC), inferior frontal junction (IFJ), anterior insular cortex (AIC), dorsal pre-motor cortex (dPMC), and posterior parietal cortex (PPC). We used a novel visual line search task which included periods when the probe stimuli were occluded but subjects had to maintain and update working memory in preparation for the sudden appearance of a probe stimulus. The six CCN regions operated as a tightly coupled network during the 'non-occluded' portions of this task, with all regions responding to probe events. In contrast, the network was differentiated during occluded search. DLPFC, not ACC/pSMA, was involved in target memory maintenance when probes were absent, while both regions became active in preparation for difficult probes at the end of each occluded period. This approach illustrates one way in which a neuronal network can be identified, its high functional connectivity established, and its components dissociated in order to better understand the interactive and specialized internal mechanisms of that network.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functions of the left superior frontal gyrus in humans: a lesion study.

            The superior frontal gyrus (SFG) is thought to contribute to higher cognitive functions and particularly to working memory (WM), although the nature of its involvement remains a matter of debate. To resolve this issue, methodological tools such as lesion studies are needed to complement the functional imaging approach. We have conducted the first lesion study to investigate the role of the SFG in WM and address the following questions: do lesions of the SFG impair WM and, if so, what is the nature of the WM impairment? To answer these questions, we compared the performance of eight patients with a left prefrontal lesion restricted to the SFG with that of a group of 11 healthy control subjects and two groups of patients with focal brain lesions [prefrontal lesions sparing the SFG (n = 5) and right parietal lesions (n = 4)] in a series of WM tasks. The WM tasks (derived from the classical n-back paradigm) allowed us to study the impact of the SFG lesions on domain (verbal, spatial, face) and complexity (1-, 2- and 3-back) processing within WM. As expected, patients with a left SFG lesion exhibited a WM deficit when compared with all control groups, and the impairment increased with the complexity of the tasks. This complexity effect was significantly more marked for the spatial domain. Voxel-to-voxel mapping of each subject's performance showed that the lateral and posterior portion of the SFG (mostly Brodmann area 8, rostral to the frontal eye field) was the subregion that contributed the most to the WM impairment. These data led us to conclude that (i) the lateral and posterior portion of the left SFG is a key component of the neural network of WM; (ii) the participation of this region in WM is triggered by the highest level of executive processing; (iii) the left SFG is also involved in spatially oriented processing. Our findings support a hybrid model of the anatomical and functional organization of the lateral SFG for WM, according to which this region is involved in higher levels of WM processing (monitoring and manipulation) but remains oriented towards spatial cognition, although the domain specificity is not exclusive and is overridden by an increase in executive demand, regardless of the domain being processed. From a clinical perspective, this study provides new information on the impact of left SFG lesions on cognition that will be of use to neurologists and neurosurgeons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test.

              A growing number of human studies have reported the beneficial influences of acute as well as chronic exercise on cognitive functions. However, neuroimaging investigations into the neural substrates of the effects of acute exercise have yet to be performed. Using multichannel functional near-infrared spectroscopy (fNIRS), we sought cortical activation related to changes in the Stroop interference test, elicited by an acute bout of moderate exercise, in healthy volunteers (N=20). The compactness and portability of fNIRS allowed on-site cortical examination in a laboratory with a cycle ergometer, enabling strict control of the exercise intensity of each subject by assessing their peak oxygen intake (VO2peak). We defined moderate exercise intensity as 50% of a subject's peak oxygen uptake (50%VO2peak). An acute bout of moderate exercise caused significant improvement of cognitive performance reflecting Stroop interference as measured by reaction time. Consistent with previous functional neuroimaging studies, we detected brain activation due to Stroop interference (incongruent minus neutral) in the lateral prefrontal cortices in both hemispheres. This Stroop-interference-related activation was significantly enhanced in the left dorsolateral prefrontal cortex due to the acute bout of moderate exercise. The enhanced activation significantly coincided with the improved cognitive performance. This suggests that the left dorsolateral prefrontal cortex is likely the neural substrate for the improved Stroop performance elicited by an acute bout of moderate exercise. fNIRS, which allows physiological monitoring and functional neuroimaging to be combined, proved to be an effective tool for examining the cognitive effects of exercise. 2009 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                07 February 2017
                2017
                : 7
                : 41581
                Affiliations
                [1 ]College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine , Fuzhou, Fujian 350122, P.R., China
                [2 ]Fujian Key Laboratory of Rehabilitation Technology , Fuzhou, 350003, China
                [3 ]Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School , Charlestown, MA, 02129, USA
                [4 ]The School of Social and Political Science, University of Edinburgh , Edinburgh, EH8,9LD, UK
                [5 ]Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine , Fuzhou, 350003, China
                Author notes
                Article
                srep41581
                10.1038/srep41581
                5294576
                28169310
                b809981e-28f0-44d9-b66e-b80bb755a134
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 01 February 2016
                : 12 December 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_

                Similar content367

                Cited by62

                Most referenced authors794