9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Francisella novicida Mutant, Lacking the Soluble Lytic Transglycosylase Slt, Exhibits Defects in Both Growth and Virulence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Francisella tularensis is the causative agent of tularemia and has gained recent interest as it poses a significant biothreat risk. F. novicida is commonly used as a laboratory surrogate for tularemia research due to genetic similarity and susceptibility of mice to infection. Currently, there is no FDA-approved tularemia vaccine, and identifying therapeutic targets remains a critical gap in strategies for combating this pathogen. Here, we investigate the soluble lytic transglycosylase or Slt in F. novicida, which belongs to a class of peptidoglycan-modifying enzymes known to be involved in cell division. We assess the role of Slt in biology and virulence of the organism as well as the vaccine potential of the slt mutant. We show that the F. novicida slt mutant has a significant growth defect in acidic pH conditions. Further microscopic analysis revealed significantly altered cell morphology compared to wild-type, including larger cell size, extensive membrane protrusions, and cell clumping and fusion, which was partially restored by growth in neutral pH or genetic complementation. Viability of the mutant was also significantly decreased during growth in acidic medium, but not at neutral pH. Furthermore, the slt mutant exhibited significant attenuation in a murine model of intranasal infection and virulence could be restored by genetic complementation. Moreover, we could protect mice using the slt mutant as a live vaccine strain against challenge with the parent strain; however, we were not able to protect against challenge with the fully virulent F. tularensis Schu S4 strain. These studies demonstrate a critical role for the Slt enzyme in maintaining proper cell division and morphology in acidic conditions, as well as replication and virulence in vivo. Our results suggest that although the current vaccination strategy with F. novicida slt mutant would not protect against Schu S4 challenges, the Slt enzyme could be an ideal target for future therapeutic development.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Tularemia.

          Francisella tularensis is the etiological agent of tularemia, a serious and occasionally fatal disease of humans and animals. In humans, ulceroglandular tularemia is the most common form of the disease and is usually a consequence of a bite from an arthropod vector which has previously fed on an infected animal. The pneumonic form of the disease occurs rarely but is the likely form of the disease should this bacterium be used as a bioterrorism agent. The diagnosis of disease is not straightforward. F. tularensis is difficult to culture, and the handling of this bacterium poses a significant risk of infection to laboratory personnel. Enzyme-linked immunosorbent assay- and PCR-based methods have been used to detect bacteria in clinical samples, but these methods have not been adequately evaluated for the diagnosis of pneumonic tularemia. Little is known about the virulence mechanisms of F. tularensis, though there is a large body of evidence indicating that it is an intracellular pathogen, surviving mainly in macrophages. An unlicensed live attenuated vaccine is available, which does appear to offer protection against ulceroglandular and pneumonic tularemia. Although an improved vaccine against tularemia is highly desirable, attempts to devise such a vaccine have been limited by the inability to construct defined allelic replacement mutants and by the lack of information on the mechanisms of virulence of F. tularensis. In the absence of a licensed vaccine, aminoglycoside antibiotics play a key role in the prevention and treatment of tularemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial cell-wall recycling.

            Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many--and quite possibly all--bacteria, the peptidoglycan fragments are recovered and recycled. Although cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall-targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall-recycling inhibitors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate.

              Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is a category A select agent. We created a sequence-defined, near-saturation transposon mutant library of F. tularensis novicida, a subspecies that causes a tularemia-like disease in rodents. The library consists of 16,508 unique insertions, an average of >9 insertions per gene, which is a coverage nearly twice that of the greatest previously achieved for any bacterial species. Insertions were recovered in 84% (1,490) of the predicted genes. To achieve high coverage, it was necessary to construct transposons carrying an endogenous Francisella promoter to drive expression of antibiotic resistance. An analysis of genes lacking (or with few) insertions identified nearly 400 candidate essential genes, most of which are likely to be required for growth on rich medium and which represent potential therapeutic targets. To facilitate genome-scale screening using the mutant collection, we assembled a sublibrary made up of two purified mutants per gene. The library provides a resource for virtually complete identification of genes involved in virulence and other nonessential processes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                14 June 2019
                2019
                : 10
                : 1343
                Affiliations
                [1] 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Frederick, MD, United States
                [2] 2Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Frederick, MD, United States
                [3] 3Unité de Bactériologie/UMR_MD1, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées , Brétigny-sur-Orge, France
                Author notes

                Edited by: Axel Cloeckaert, Institut National de la Recherche Agronomique (INRA), France

                Reviewed by: Richard A. Bowen, Colorado State University, United States; Sue Twine, National Research Council Canada (NRC-CNRC), Canada

                *Correspondence: Joel A. Bozue, joel.a.bozue.civ@ 123456mail.mil

                This article was submitted to Infectious Diseases, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01343
                6587636
                31258523
                b8166efb-6a2b-4cd2-994e-064c71aa5bf3
                Copyright © 2019 Bachert, Biryukov, Chua, Rodriguez, Toothman, Cote, Klimko, Hunter, Shoe, Williams, Kuehl, Biot and Bozue.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 April 2019
                : 29 May 2019
                Page count
                Figures: 12, Tables: 2, Equations: 0, References: 80, Pages: 20, Words: 0
                Funding
                Funded by: Defense Threat Reduction Agency 10.13039/100000774
                Award ID: CB10645
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                francisella,peptidoglycan (pg),tularemia,francisella novicida,virulence,cell morphology,lytic transglycosylase,cell division

                Comments

                Comment on this article