148
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Structural Basis for BRD2/4-Mediated Host Chromatin Interaction and Oligomer Assembly of Kaposi Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus LANA Proteins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ 2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ 2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA ‘nuclear speckles’ and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence.

          Author Summary

          Kaposi sarcoma-associated herpesvirus (KSHV) causes Kaposi Sarcoma, Primary Effusion lymphoma and the plasma cell variant of Multicentric Castleman's Disease. Its oncogenic effect is linked to its ability to persist in a latent form for the life time of infected individuals. During latency viral genomes are replicated and passed to daughter cells in synchrony with the infected cell without the formation of new virions. A key viral protein in this process is the latency-associated nuclear antigen, LANA. In latently infected cells, viral genomes and LANA form characteristic nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin components. We have solved the crystal structure of the c-terminal, DNA-binding, domain (CTD) of KSHV LANA (kLANA) and its homologue mLANA of a related murine γ 2-herpesvirus, which is frequently used as a model to study latent persistence in vivo. We also identified the binding site for two chromatin proteins, BRD2/4, by NMR spectroscopy. We demonstrate the functional importance of these structural features, and their contribution to latent replication and ‘LANA speckle’ formation, in cell culture and in vivo experiments. Our results provide a structural basis for the assembly of LANA-containing nuclear structures that are required for latent viral replication and persistence.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis.

          The developing science called structural genomics has focused to date mainly on high-throughput expression of individual proteins, followed by their purification and structure determination. In contrast, the term structural biology is used to denote the determination of structures, often complexes of several macromolecules, that illuminate aspects of biological function. Here we bridge structural genomics to structural biology with a procedure for determining protein complexes of previously unknown function from any organism with a sequenced genome. From computational genomic analysis, we identify functionally linked proteins and verify their interaction in vitro by coexpression/copurification. We illustrate this procedure by the structural determination of a previously unknown complex between a PE and PPE protein from the Mycobacterium tuberculosis genome, members of protein families that constitute approximately 10% of the coding capacity of this genome. The predicted complex was readily expressed, purified, and crystallized, although we had previously failed in expressing individual PE and PPE proteins on their own. The reason for the failure is clear from the structure, which shows that the PE and PPE proteins mate along an extended apolar interface to form a four-alpha-helical bundle, where two of the alpha-helices are contributed by the PE protein and two by the PPE protein. Our entire procedure for the identification, characterization, and structural determination of protein complexes can be scaled to a genome-wide level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The RosettaDock server for local protein–protein docking

            The RosettaDock server (http://rosettadock.graylab.jhu.edu) identifies low-energy conformations of a protein–protein interaction near a given starting configuration by optimizing rigid-body orientation and side-chain conformations. The server requires two protein structures as inputs and a starting location for the search. RosettaDock generates 1000 independent structures, and the server returns pictures, coordinate files and detailed scoring information for the 10 top-scoring models. A plot of the total energy of each of the 1000 models created shows the presence or absence of an energetic binding funnel. RosettaDock has been validated on the docking benchmark set and through the Critical Assessment of PRedicted Interactions blind prediction challenge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen.

              Primary effusion lymphoma (PEL) cells harbor Kaposi's sarcoma-associated herpesvirus (KSHV) episomes and express a KSHV-encoded latency-associated nuclear antigen (LANA). In PEL cells, LANA and KSHV DNA colocalized in dots in interphase nuclei and along mitotic chromosomes. In the absence of KSHV DNA, LANA was diffusely distributed in the nucleus or on mitotic chromosomes. In lymphoblasts, LANA was necessary and sufficient for the persistence of episomes containing a specific KSHV DNA fragment. Furthermore, LANA colocalized with the artificial KSHV DNA episomes in nuclei and along mitotic chromosomes. These results support a model in which LANA tethers KSHV DNA to chromosomes during mitosis to enable the efficient segregation of KSHV episomes to progeny cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2013
                October 2013
                17 October 2013
                : 9
                : 10
                : e1003640
                Affiliations
                [1 ]Department of Structural Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
                [2 ]Institute of Virology, Hannover Medical School, Hannover, Germany
                [3 ]Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
                [4 ]Research Division for Structural Analysis, Hannover Medical School, Hannover, Germany
                [5 ]Institute of Biophysical Chemistry, Hannover Medical School, Hannover, Germany
                University of Southern California Keck School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JH MWG HA RF TFS TL. Performed the experiments: JH MWG JK UR HA JR MP TL. Analyzed the data: JH MWG JK UR HA CR TFS TL. Contributed reagents/materials/analysis tools: JH MWG JK RF MP JR. Wrote the paper: JH MWG TFS TL.

                Article
                PPATHOGENS-D-13-01093
                10.1371/journal.ppat.1003640
                3798688
                24146614
                b82003af-2223-4e20-9358-428e7393df21
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 April 2013
                : 3 August 2013
                Page count
                Pages: 19
                Funding
                This work was supported by the DFG ( http://www.dfg.de/) Collaborative Research Centre SFB900 ‘Chronic Infections: Microbial Persistence and its Control’ and the European Union Integrated project INCA ( http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=8323620) - LSHC-CT-2005-018704 - to TFS, the Emmy Noether Young Investigator Grant LU1471/3-1 ( http://www.dfg.de/foerderung/programme/einzelfoerderung/emmy_noether/) to TL, a Helmholtz (HGF) ‘Impuls und Vernetzungsfonds’ ( http://www.helmholtz.de/en/about_us/initiating_and_networking/) grant to CR, by HGF grant VH-GS-202 to the HZI Grad School, by BMBF ( http://www.bmbf.de/en/index.php) grants (NGFNplus, FKZ PIM-01GS0802-3) and Wilhelm Sander-Stiftung ( http://www.wilhelm-sander-stiftung.de/cms/front_content.php) grant (2009.046.2) to HA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article