17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maternal Nutrient Restriction During Late Gestation and Early Postnatal Growth in Sheep Differentially Reset the Control of Energy Metabolism in the Gastric Mucosa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fetal growth restriction followed by accelerated postnatal growth contributes to impaired metabolic function in adulthood. The extent to which these outcomes may be mediated centrally within the hypothalamus, as opposed to in the periphery within the digestive tract, remains unknown. In a sheep model, we achieved intrauterine growth restriction experimentally by maternal nutrient restriction (R) that involved a 40% reduction in food intake through late gestation. R offspring were then either reared singly to accelerate postnatal growth (RA) or as twins and compared with controls also reared singly. From weaning, all offspring were maintained indoors until adulthood. A reduced litter size accelerated postnatal growth for only the first month of lactation. Independently from postnatal weight gain and later fat mass, R animals developed insulin resistance as adults. However, restricted accelerated offspring compared with both the control accelerated and restricted restricted offspring ate less and had higher fasting plasma leptin as adults, an adaptation which was accompanied by changes in energy sensing and cell proliferation within the abomasum. Additionally, although fetal restriction down-regulated gene expression of mammalian target of rapamycin and carnitine palmitoyltransferase 1-dependent pathways in the abomasum, RA offspring compensated for this by exhibiting greater activity of AMP-activated kinase-dependent pathways. This study demonstrates a role for perinatal nutrition in the peripheral control of food intake and in energy sensing in the gastric mucosal and emphasizes the importance of diet in early life in regulating energy metabolism during adulthood.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase.

            Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate-dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inactivation of the Fto gene protects from obesity.

              Several independent, genome-wide association studies have identified a strong correlation between body mass index and polymorphisms in the human FTO gene. Common variants in the first intron define a risk allele predisposing to obesity, with homozygotes for the risk allele weighing approximately 3 kilograms more than homozygotes for the low risk allele. Nevertheless, the functional role of FTO in energy homeostasis remains elusive. Here we show that the loss of Fto in mice leads to postnatal growth retardation and a significant reduction in adipose tissue and lean body mass. The leanness of Fto-deficient mice develops as a consequence of increased energy expenditure and systemic sympathetic activation, despite decreased spontaneous locomotor activity and relative hyperphagia. Taken together, these experiments provide, to our knowledge, the first direct demonstration that Fto is functionally involved in energy homeostasis by the control of energy expenditure.
                Bookmark

                Author and article information

                Journal
                Endocrinology
                endo
                endoc
                endo
                Endocrinology
                Endocrine Society (Chevy Chase, MD )
                0013-7227
                1945-7170
                July 2011
                10 May 2011
                10 May 2011
                : 152
                : 7
                : 2816-2826
                Affiliations
                Early Life Nutrition Research Unit (S.P.S., N.S.D., L.L.Y.C., H.S., M.H., C.F., V.S., H.P.F., N.P., J.R., H.B., M.E.S.), Academic Child Health, Division of Human Development and Nottingham Respiratory Medicine Biomedical Research Unit, School of Clinical Sciences, University Hospital, Nottingham NG7 2UH, United Kingdom; and Department of Animal Sciences (D.K.), University of Missouri, Columbia, Missouri 65201
                Author notes
                Address all correspondence and requests for reprints to: Professor Michael E. Symonds, The University of Nottingham, Early Nutrition Unit, Nottingham, NG7 2UH United Kingdom. E-mail: michael.symonds@ 123456nottingham.ac.uk .
                Article
                EN-11-0169
                10.1210/en.2011-0169
                3192420
                21558318
                b826c139-5db9-492f-acdc-f936a2575384
                Copyright © 2011 by The Endocrine Society

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/us/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 March 2011
                : 11 April 2011
                Categories
                Reproduction-Development

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article