28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracorporeal shockwave therapy in osteoporotic osteoarthritis of the knee in rats: an experiment in animals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          This study investigated the effectiveness of extracorporeal shockwave therapy (ESWT) in osteoporotic (OP) osteoarthritis (OA) of rat knee.

          Methods

          Fifty-six rats were divided into seven groups including sham, OA, OP, OA + OP, OA + ESWT, OP + ESWT, and OA + OP + ESWT groups. The evaluations included gross pathology, bone mineral density (BMD), micro-computed tomography (micro-CT) scan, bone-strength test, histopathologic examination, and immunohistochemical analysis.

          Results

          On gross pathology, group OA + OP showed larger areas of osteoarthritic changes than did groups OA and OP, as compared with the sham group. BMD and bone strength significantly decreased in groups OA, OP, and OA + OP relative to the sham group, and ESWT significantly improved BMD and bone-strength changes. On micro-CT scan, the subchondral plate thickness significantly decreased, and the bone porosity increased in groups OA, OP, and OA + OP, and ESWT significantly improved the changes in subchondral-plate thickness and bone porosity. In histopathologic examination, Mankin score and safranin O score significantly increased in groups OA and group OA + OP, but not in group OP relative to the sham group, and ESWT significantly improved the changes. In immunohistochemical analysis, Dickkopf-1 (DKK-1) significantly increased, but vessel endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), and bone morphogenetic protein 2 (BMP-2) decreased in groups OA, OP, and OA + OP relative to the sham group, and ESWT significantly reversed the changes.

          Conclusions

          Osteoporosis increased the severity of cartilage damage in osteoarthritis of the knee. ESWT showed effectiveness in the reduction of osteoporotic osteoarthritis of the knee in rats.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis cartilage histopathology: grading and staging.

          Current osteoarthritis (OA) histopathology assessment methods have difficulties in their utility for early disease, as well as their reproducibility and validity. Our objective was to devise a more useful method to assess OA histopathology that would have wide application for clinical and experimental OA assessment and would become recognized as the standard method. An OARSI Working Group deliberated on principles, standards and features for an OA cartilage pathology assessment system. Using current knowledge of the pathophysiology of OA morphologic features, a proposed system was presented at OARSI 2000. Subsequently, this was widely circulated for comments amongst experts in OA pathology. An OA cartilage pathology assessment system based on six grades, which reflect depth of the lesion and four stages reflecting extent of OA over the joint surface was developed. The OARSI cartilage OA histopathology grading system appears consistent and simple to apply. Further studies are required to confirm the system's utility.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of subchondral bone in the initiation and progression of cartilage damage.

              Osteoarthrosis is a physiologic imbalance, a "joint failure" similar to "heart failure," in which mechanical factors play a role. The initiation and progression of cartilage damage are distinct phenomena. One of the mechanisms of initiation may be a steep stiffness gradient in the underlying subchondral bone. Progression of cartilage lesions probably requires stiffened subchondral bone. In such situations, transverse stresses at the base of the articular cartilage could cause deep horizontal splits in that tissue. The most likely cause of subchondral stiffening in an otherwise congruent joint is repeated failure of the musculoskeletal peak dynamic force attenuation mechanisms. The health and integrity of the overlying articular cartilage depends on the mechanical properties of its bony bed. In certain models of osteoarthrosis, alterations of the bony bed occur before the cartilage changes and suggest that this can occur in clinical conditions. Stiffening of the subchondral bone also can effect joint conformation, which involves deformation of articular cartilage and bone to create maximum contact areas under load.
                Bookmark

                Author and article information

                Contributors
                Journal
                Arthritis Res Ther
                Arthritis Res. Ther
                Arthritis Research & Therapy
                BioMed Central
                1478-6354
                1478-6362
                2014
                3 July 2014
                : 16
                : 4
                : R139
                Affiliations
                [1 ]Center of Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao Sung District, Kaohsiung 833, Taiwan
                [2 ]Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao Sung District Kaohsiung 833, Taiwan
                Article
                ar4601
                10.1186/ar4601
                4095692
                24994452
                b8275af4-9a4c-456e-bfd0-9079aff7ff15
                Copyright © 2014 Wang et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 November 2013
                : 17 June 2014
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article