8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Purification and N-terminal analysis of urease from Helicobacter pylori.

      Infection and Immunity
      Amino Acid Sequence, Amino Acids, analysis, Blotting, Western, Campylobacter, enzymology, Kinetics, Molecular Sequence Data, Urease, isolation & purification

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urease of Helicobacter pylori (formerly Campylobacter pylori) is believed to represent a critical virulence determinant for this species. Ammonia generated by hydrolysis of urea may protect the acid-sensitive bacterium as it colonizes human gastric mucosa. An H. pylori strain, cultured from a gastric biopsy of a patient with complaints of abdominal pain and a history of peptic ulcer disease, was isolated on selective medium and cultured in Mueller-Hinton broth supplemented with 4% fetal calf serum. Whole cells were ruptured by French pressure cell lysis, and soluble protein was chromatographed on DEAE-Sepharose, phenyl-Sepharose, Mono-Q, and Superose 6 resins. Purified urease represented 6% of the soluble protein of crude extract, was estimated to have a native molecular size of 550 kilodaltons (kDa), and was composed of two distinct subunits of apparent molecular sizes of 66 and 29.5 kDa. On the basis of subunit size, a 1:1 subunit ratio as measured by scanning densitometry of Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels, and estimated native molecular size, the data are consistent with a stoichiometry of (29.5 kDa-66 kDa)6 for the structure of the native enzyme. Km for urea was estimated at 0.2 mM. By N-terminal analysis, the 29.5-kDa subunit of H. pylori urease was found to share significant amino acid sequence similarity with the smallest of three subunits of the Proteus mirabilis and Morganella morganii ureases, as well as to the amino terminus of the unique jack bean subunit. The 66-kDa subunit also shared up to 80% similarity with the largest of three subunits of P. mirabilis, M. morganii, and Klebsiella aerogenes ureases and to internal sequences (amino acids 271 to 285) of the jack bean urease subunit. Thus, the amino acid sequence is conserved among ureases with one, two, and three distinct subunits, suggesting a common ancestral urease gene. Also, urease subunits of M. morganii and jack bean were specifically recognized by antisera raised against the 66-kDa subunit of H. pylori urease, demonstrating that at least some antigenic determinants were conserved among ureases from different species.

          Related collections

          Author and article information

          Journal
          2318539
          258572
          10.1128/IAI.58.4.992-998.1990

          Chemistry
          Amino Acid Sequence,Amino Acids,analysis,Blotting, Western,Campylobacter,enzymology,Kinetics,Molecular Sequence Data,Urease,isolation & purification

          Comments

          Comment on this article