11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2

      , , ,
      Geoscientific Model Development
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the Goddard Earth Observing System-5 (GEOS-5) atmospheric general circulation model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO MERRA2 reanalysis, global mesoscale simulations at 10 km resolution through 1.5 km resolution, the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. <br><br> The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of resolution-aware parameters related to the moist physics was shown to result in improvements at higher resolutions and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.

          Related collections

          Author and article information

          Journal
          Geoscientific Model Development
          Geosci. Model Dev.
          Copernicus GmbH
          1991-9603
          2015
          May 2015
          : 8
          : 5
          : 1339-1356
          Article
          10.5194/gmd-8-1339-2015
          b8493879-8af4-4749-97cb-62e183363cb3
          © 2015

          http://creativecommons.org/licenses/by/3.0/

          History

          Comments

          Comment on this article