+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HapX Positively and Negatively Regulates the Transcriptional Response to Iron Deprivation in Cryptococcus neoformans

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The fungal pathogen Cryptococcus neoformans is a major cause of illness in immunocompromised individuals such as AIDS patients. The ability of the fungus to acquire nutrients during proliferation in host tissue and the ability to elaborate a polysaccharide capsule are critical determinants of disease outcome. We previously showed that the GATA factor, Cir1, is a major regulator both of the iron uptake functions needed for growth in host tissue and the key virulence factors such as capsule, melanin and growth at 37°C. We are interested in further defining the mechanisms of iron acquisition from inorganic and host-derived iron sources with the goal of understanding the nutritional adaptation of C. neoformans to the host environment. In this study, we investigated the roles of the HAP3 and HAPX genes in iron utilization and virulence. As in other fungi, the C. neoformans Hap proteins negatively influence the expression of genes encoding respiratory and TCA cycle functions under low-iron conditions. However, we also found that HapX plays both positive and negative roles in the regulation of gene expression, including a positive regulatory role in siderophore transporter expression. In addition, HapX also positively regulated the expression of the CIR1 transcript. This situation is in contrast to the negative regulation by HapX of genes encoding GATA iron regulatory factors in Aspergillus nidulans and Schizosaccharomyces pombe. Although both hapX and hap3 mutants were defective in heme utilization in culture, only HapX made a contribution to virulence, and loss of HapX in a strain lacking the high-affinity iron uptake system did not cause further attenuation of disease. Therefore, HapX appears to have a minimal role during infection of mammalian hosts and instead may be an important regulator of environmental iron uptake functions. Overall, these results indicated that C. neoformans employs multiple strategies for iron acquisition during infection.

          Author Summary

          Cryptococcus neoformans causes life-threatening central nervous system infections in immunocompromised people such as AIDS patients. The competition for iron between pathogens such as C. neoformans and mammalian hosts is a key aspect of disease outcome. We previously identified and characterized the major iron regulatory protein Cir1 in C. neoformans, as well as proteins for the transport of iron-binding molecules (siderophores) and for high-affinity iron uptake. In this study, we examined the roles of additional regulatory proteins (Hap proteins) in the response to low-iron conditions and the use of host iron sources such as heme and transferrin. We discovered that the HapX protein has a conserved regulatory function to repress iron-dependent functions during iron deprivation, as well as a positive regulatory role for the expression of putative siderophore transporters. A hapX mutant was defective in the use of heme as an iron source in culture but was only modestly attenuated for virulence in mice. This result suggests that additional mechanisms for iron uptake must be available to support C. neoformans proliferation in the host, and that HapX may play an important role in environmental iron acquisition.

          Related collections

          Most cited references 43

          • Record: found
          • Abstract: found
          • Article: not found

          Variance stabilization applied to microarray data calibration and to the quantification of differential expression.

          We introduce a statistical model for microarray gene expression data that comprises data calibration, the quantification of differential expression, and the quantification of measurement error. In particular, we derive a transformation h for intensity measurements, and a difference statistic Deltah whose variance is approximately constant along the whole intensity range. This forms a basis for statistical inference from microarray data, and provides a rational data pre-processing strategy for multivariate analyses. For the transformation h, the parametric form h(x)=arsinh(a+bx) is derived from a model of the variance-versus-mean dependence for microarray intensity data, using the method of variance stabilizing transformations. For large intensities, h coincides with the logarithmic transformation, and Deltah with the log-ratio. The parameters of h together with those of the calibration between experiments are estimated with a robust variant of maximum-likelihood estimation. We demonstrate our approach on data sets from different experimental platforms, including two-colour cDNA arrays and a series of Affymetrix oligonucleotide arrays.
            • Record: found
            • Abstract: found
            • Article: not found

            Iron and microbial infection.

            The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. It is also a pivotal component of the innate immune response through its role in the generation of toxic oxygen and nitrogen intermediates. During evolution, the shared requirement of micro- and macroorganisms for this important nutrient has shaped the pathogen-host relationship. Here, we discuss how pathogens compete with the host for iron, and also how the host uses iron to counteract this threat.
              • Record: found
              • Abstract: found
              • Article: not found

              Siderophore Biosynthesis But Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence

              The ability to acquire iron in vivo is essential for most microbial pathogens. Here we show that Aspergillus fumigatus does not have specific mechanisms for the utilization of host iron sources. However, it does have functional siderophore-assisted iron mobilization and reductive iron assimilation systems, both of which are induced upon iron deprivation. Abrogation of reductive iron assimilation, by inactivation of the high affinity iron permease (FtrA), has no effect on virulence in a murine model of invasive aspergillosis. In striking contrast, A. fumigatus l-ornithine-N 5-monooxygenase (SidA), which catalyses the first committed step of hydroxamate-type siderophore biosynthesis, is absolutely essential for virulence. Thus, A. fumigatus SidA is an essential virulence attribute. Combined with the absence of a sidA ortholog—and the fungal siderophore system in general—in mammals, these data demonstrate that the siderophore biosynthetic pathway represents a promising new target for the development of antifungal therapies.

                Author and article information

                Role: Editor
                PLoS Pathog
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                November 2010
                November 2010
                24 November 2010
                : 6
                : 11
                [1 ]Department of Biotechnology, Chung-Ang University, Daedeok-Myeon, Anseong-Si, Gyeonggi-Do, Republic of Korea
                [2 ]The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
                [3 ]Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
                University of Melbourne, Australia
                Author notes

                Conceived and designed the experiments: WHJ SS JWK. Performed the experiments: WHJ SS GH JW CKYF. Analyzed the data: WHJ SS GH JW CD RW JWK. Contributed reagents/materials/analysis tools: CD RW. Wrote the paper: WHJ SS JWK.

                ¶ These authors made equal contributions and should be considered co-first authors.

                Jung et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 16
                Research Article
                Genetics and Genomics/Gene Expression
                Infectious Diseases/Tropical and Travel-Associated Diseases
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Medical Microbiology

                Infectious disease & Microbiology


                Comment on this article