58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Filtered Iterative Reconstruction (FIR) via Proximal Forward-Backward Splitting: A Synergy of Analytical and Iterative Reconstruction Method for CT

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This work is to develop a general framework, namely filtered iterative reconstruction (FIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality. Specifically, FIR is formulated as a combination of filtered data fidelity and sparsity regularization, and then solved by proximal forward-backward splitting (PFBS) algorithm. As a result, the image reconstruction decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected to the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is in turn weighted together with previous image iterate to form next image iterate. Since the eigenvalues of AR-projection operator are close to the unity, PFBS based FIR has a fast convergence. The proposed FIR method is validated in the setting of circular cone-beam CT with AR being FDK and total-variation sparsity regularization, and has improved image quality from both AR and IR. For example, AIR has improved visual assessment and quantitative measurement in terms of both contrast and resolution, and reduced axial and half-fan artifacts.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: not found
          • Article: not found

          A fast and accurate Fourier algorithm for iterative parallel-beam tomography

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An error-reduction-based algorithm for cone-beam computed tomography.

            Image reconstruction from cone-beam projections collected along a single circular source trajectory is commonly done using the Feldkamp algorithm, which performs well only with a small cone angle. In this report, we propose an error-reduction-based algorithm to increase the cone angle by several folds to achieve satisfactory image quality at the same radiation dose. In our scheme, we first reconstruct the object using the Feldkamp algorithm. Then, we synthesize cone-beam projection data from the reconstructed volume in the same geometry, and reconstruct the volume again from the synthesized projections. Finally, these two reconstruction results are combined to reduce the reconstruction error and produce a superior image volume. The merit of this algorithm is demonstrated in numerical simulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regularized iterative weighted filtered backprojection for helical cone-beam CT.

              Contemporary reconstruction methods employed for clinical helical cone-beam computed tomography (CT) are analytical (noniterative) but mathematically nonexact, i.e., the reconstructed image contains so called cone-beam artifacts, especially for higher cone angles. Besides cone artifacts, these methods also suffer from windmill artifacts: alternating dark and bright regions creating spiral-like patterns occurring in the vicinity of high z-direction derivatives. In this article, the authors examine the possibility to suppress cone and windmill artifacts by means of iterative application of nonexact three-dimensional filtered backprojection, where the analytical part of the reconstruction brings about accelerated convergence. Specifically, they base their investigations on the weighted filtered backprojection method [Stierstorfer et al., Phys. Med. Biol. 49, 2209-2218 (2004)]. Enhancement of high frequencies and amplification of noise is a common but unwanted side effect in many acceleration attempts. They have employed linear regularization to avoid these effects and to improve the convergence properties of the iterative scheme. Artifacts and noise, as well as spatial resolution in terms of modulation transfer functions and slice sensitivity profiles have been measured. The results show that for cone angles up to +/-2.78 degrees, cone artifacts are suppressed and windmill artifacts are alleviated within three iterations. Furthermore, regularization parameters controlling spatial resolution can be tuned so that image quality in terms of spatial resolution and noise is preserved. Simulations with higher number of iterations and long objects (exceeding the measured region) verify that the size of the reconstructible region is not reduced, and that the regularization greatly improves the convergence properties of the iterative scheme. Taking these results into account, and the possibilities to extend the proposed method with more accurate modeling of the acquisition process, the authors believe that iterative improvement with non-exact methods is a promising technique for medical CT applications.
                Bookmark

                Author and article information

                Journal
                1508.04687

                Medical physics
                Medical physics

                Comments

                Comment on this article