26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Augmenting Immunogenic Cell Death and Alleviating Myeloid‐Derived Suppressor Cells by Sono‐Activatable Semiconducting Polymer Nanopartners for Immunotherapy

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" id="d13075785e97">Inducing immunogenic cell death (ICD) by sonodynamic therapy (SDT) is promising for cancer immunotherapy, which however is inefficient due to oxygen depletion that compromises SDT effect and mediates recruitment of immunosuppressive myeloid-derived suppressor cells (MDSCs). The fabrication of sono-activatable semiconducting polymer nanopartners (SPNTi ) to simultaneously augment ICD and alleviate MDSCs for immunotherapy is reported. A sonodynamic semiconducting polymer, hydrophobic hypoxia-responsive tirapazamine (TPZ)-conjugate, and MDSC-targeting drug (ibrutinib) are encapsulated inside such SPNTi with surface shell of a singlet oxygen (1 O2 )-cleavable amphiphilic polymer. TPZ and ibrutinib serve as drug partners to enlarge immunotherapeutic effect. Upon sono-activation, SPNTi generate 1 O2 to break 1 O2 -cleavable polymers for in situ liberations of TPZ-conjugate and ibrutinib in tumor sites, and oxygen is consumed to create severe hypoxic tumor microenvironment, in which, TPZ-conjugate is activated for augmenting ICD action, while ibrutinib alleviates MDSCs for promoting antitumor immunological effect. In a bilateral tumor mouse model, SPNTi -mediated sono-activatable immunotherapy results in growth restraints of primary and distant tumors and noteworthy precaution of tumor metastases. This study thus provides a sono-activatable immunotherapeutic strategy with high precision and safety for cancer via overcoming post-treatment hypoxia and targeting MDSCs. </p>

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Myeloid-derived suppressor cells as regulators of the immune system.

          Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that expand during cancer, inflammation and infection, and that have a remarkable ability to suppress T-cell responses. These cells constitute a unique component of the immune system that regulates immune responses in healthy individuals and in the context of various diseases. In this Review, we discuss the origin, mechanisms of expansion and suppressive functions of MDSCs, as well as the potential to target these cells for therapeutic benefit.
            • Record: found
            • Abstract: found
            • Article: not found

            Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity

            Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They are implicated in the regulation of immune responses in many pathological conditions and are closely associated with poor clinical outcomes in cancer. Recent studies have indicated key distinctions between MDSCs and classical neutrophils and monocytes, and, in this Review, we discuss new data on the major genomic and metabolic characteristics of MDSCs. We explain how these characteristics shape MDSC function and could facilitate therapeutic targeting of these cells, particularly in cancer and in autoimmune diseases. Additionally, we briefly discuss emerging data on MDSC involvement in pregnancy, neonatal biology and COVID-19.
              • Record: found
              • Abstract: found
              • Article: not found

              Myeloid-derived suppressor cells coming of age

              Myeloid-derived suppressor cells (MDSCs) are a population of myeloid cells generated during a large array of pathologic conditions ranging from cancer to obesity. These cells represent a pathologic state of activation of monocytes and relatively immature neutrophils. MDSCs are characterized by a distinct set of genomic and biochemical features, and can, with recent findings, be distinguished by specific surface molecules. The salient feature of these cells is their ability to inhibit T cell function and thus contribute to the pathogenesis of various diseases. In this review, we discuss the origin and nature of these cells, their distinctive features and biological roles in cancer, infectious diseases, autoimmunity, obesity and pregnancy.

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                July 02 2023
                Affiliations
                [1 ] State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 China
                Article
                10.1002/adma.202302508
                37165741
                b877f4e7-8805-44a6-b486-1e9af9628949
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article

                Related Documents Log