2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Obstructive Sleep Apnoea Syndrome Screening Through Wrist-Worn Smartbands: A Machine-Learning Approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          A large portion of the adult population is thought to suffer from obstructive sleep apnoea syndrome (OSAS), a sleep-related breathing disorder associated with increased morbidity and mortality. International guidelines include the polysomnography and the cardiorespiratory monitoring (CRM) as diagnostic tools for OSAS, but they are unfit for a large-scale screening, given their invasiveness, high cost and lengthy process of scoring. Current screening methods are based on self-reported questionnaires that suffer from lack of objectivity. On the contrary, commercial smartbands are wearable devices capable of collecting accelerometric and photoplethysmographic data in a user-friendly and objective way. We questioned whether machine-learning (ML) classifiers trained on data collected through these wearable devices would help predict OSAS severity.

          Patients and Methods

          Each of the patients (n = 78, mean age ± SD: 57.2 ± 12.9 years; 30 females) underwent CRM and concurrently wore a commercial wrist smartband. CRM’s traces were scored, and OSAS severity was reported as apnoea hypopnoea index (AHI). We trained three pairs of classifiers to make the following prediction: AHI <5 vs AHI ≥5, AHI <15 vs AHI ≥15, and AHI <30 vs AHI ≥30.

          Results

          According to the Matthews correlation coefficient (MCC), the proposed algorithms reached an overall good correlation with the ground truth (CRM) for AHI <5 vs AHI ≥5 (MCC: 0.4) and AHI <30 vs AHI ≥30 (MCC: 0.3) classifications. AHI <5 vs AHI ≥5 and AHI <30 vs AHI ≥30 classifiers’ sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV) and diagnostic odds ratio (DOR) are comparable with the STOP-Bang questionnaire, an established OSAS screening tool.

          Conclusion

          Machine learning algorithms showed an overall good performance. Unlike questionnaires, these are based on objectively collected data. Furthermore, these commercial devices are widely distributed in the general population. The aforementioned advantages of machine-learning algorithms applied to smartbands’ data over questionnaires lead to the conclusion that they could serve a population-scale screening for OSAS.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Array programming with NumPy

          Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves 1 and in the first imaging of a black hole 2 . Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine.

            The American Academy of Sleep Medicine (AASM) Sleep Apnea Definitions Task Force reviewed the current rules for scoring respiratory events in the 2007 AASM Manual for the Scoring and Sleep and Associated Events to determine if revision was indicated. The goals of the task force were (1) to clarify and simplify the current scoring rules, (2) to review evidence for new monitoring technologies relevant to the scoring rules, and (3) to strive for greater concordance between adult and pediatric rules. The task force reviewed the evidence cited by the AASM systematic review of the reliability and validity of scoring respiratory events published in 2007 and relevant studies that have appeared in the literature since that publication. Given the limitations of the published evidence, a consensus process was used to formulate the majority of the task force recommendations concerning revisions.The task force made recommendations concerning recommended and alternative sensors for the detection of apnea and hypopnea to be used during diagnostic and positive airway pressure (PAP) titration polysomnography. An alternative sensor is used if the recommended sensor fails or the signal is inaccurate. The PAP device flow signal is the recommended sensor for the detection of apnea, hypopnea, and respiratory effort related arousals (RERAs) during PAP titration studies. Appropriate filter settings for recording (display) of the nasal pressure signal to facilitate visualization of inspiratory flattening are also specified. The respiratory inductance plethysmography (RIP) signals to be used as alternative sensors for apnea and hypopnea detection are specified. The task force reached consensus on use of the same sensors for adult and pediatric patients except for the following: (1) the end-tidal PCO(2) signal can be used as an alternative sensor for apnea detection in children only, and (2) polyvinylidene fluoride (PVDF) belts can be used to monitor respiratory effort (thoracoabdominal belts) and as an alternative sensor for detection of apnea and hypopnea (PVDFsum) only in adults.The task force recommends the following changes to the 2007 respiratory scoring rules. Apnea in adults is scored when there is a drop in the peak signal excursion by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative apnea sensor, for ≥ 10 seconds. Hypopnea in adults is scored when the peak signal excursions drop by ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ 10 seconds in association with either ≥ 3% arterial oxygen desaturation or an arousal. Scoring a hypopnea as either obstructive or central is now listed as optional, and the recommended scoring rules are presented. In children an apnea is scored when peak signal excursions drop by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative sensor; and the event meets duration and respiratory effort criteria for an obstructive, mixed, or central apnea. A central apnea is scored in children when the event meets criteria for an apnea, there is an absence of inspiratory effort throughout the event, and at least one of the following is met: (1) the event is ≥ 20 seconds in duration, (2) the event is associated with an arousal or ≥ 3% oxygen desaturation, (3) (infants under 1 year of age only) the event is associated with a decrease in heart rate to less than 50 beats per minute for at least 5 seconds or less than 60 beats per minute for 15 seconds. A hypopnea is scored in children when the peak signal excursions drop is ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ the duration of 2 breaths in association with either ≥ 3% oxygen desaturation or an arousal. In children and adults, surrogates of the arterial PCO(2) are the end-tidal PCO(2) or transcutaneous PCO(2) (diagnostic study) or transcutaneous PCO(2) (titration study). For adults, sleep hypoventilation is scored when the arterial PCO(2) (or surrogate) is > 55 mm Hg for ≥ 10 minutes or there is an increase in the arterial PCO(2) (or surrogate) ≥ 10 mm Hg (in comparison to an awake supine value) to a value exceeding 50 mm Hg for ≥ 10 minutes. For pediatric patients hypoventilation is scored when the arterial PCO(2) (or surrogate) is > 50 mm Hg for > 25% of total sleep time. In adults Cheyne-Stokes breathing is scored when both of the following are met: (1) there are episodes of ≥ 3 consecutive central apneas and/or central hypopneas separated by a crescendo and decrescendo change in breathing amplitude with a cycle length of at least 40 seconds (typically 45 to 90 seconds), and (2) there are five or more central apneas and/or central hypopneas per hour associated with the crescendo/decrescendo breathing pattern recorded over a minimum of 2 hours of monitoring.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation

              Background To evaluate binary classifications and their confusion matrices, scientific researchers can employ several statistical rates, accordingly to the goal of the experiment they are investigating. Despite being a crucial issue in machine learning, no widespread consensus has been reached on a unified elective chosen measure yet. Accuracy and F1 score computed on confusion matrices have been (and still are) among the most popular adopted metrics in binary classification tasks. However, these statistical measures can dangerously show overoptimistic inflated results, especially on imbalanced datasets. Results The Matthews correlation coefficient (MCC), instead, is a more reliable statistical rate which produces a high score only if the prediction obtained good results in all of the four confusion matrix categories (true positives, false negatives, true negatives, and false positives), proportionally both to the size of positive elements and the size of negative elements in the dataset. Conclusions In this article, we show how MCC produces a more informative and truthful score in evaluating binary classifications than accuracy and F1 score, by first explaining the mathematical properties, and then the asset of MCC in six synthetic use cases and in a real genomics scenario. We believe that the Matthews correlation coefficient should be preferred to accuracy and F1 score in evaluating binary classification tasks by all scientific communities.
                Bookmark

                Author and article information

                Journal
                Nat Sci Sleep
                Nat Sci Sleep
                nss
                Nature and Science of Sleep
                Dove
                1179-1608
                18 May 2022
                2022
                : 14
                : 941-956
                Affiliations
                [1 ]Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa , Pisa, Italy
                [2 ]Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, the Netherlands
                [3 ]Neurological Clinics, University Hospital of Pisa , Pisa, Italy
                [4 ]Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
                [5 ]Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris , Pisa, Italy
                Author notes
                Correspondence: Ugo Faraguna, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa , Via San Zeno, 31, Pisa, 56123, Italy, Tel +39 050 2213470, Email ugo.faraguna@unipi.it
                Author information
                http://orcid.org/0000-0003-3881-5742
                http://orcid.org/0000-0001-6968-2503
                http://orcid.org/0000-0003-2523-1924
                http://orcid.org/0000-0003-0960-4938
                http://orcid.org/0000-0001-8500-1149
                http://orcid.org/0000-0002-6142-2384
                http://orcid.org/0000-0002-4814-7218
                Article
                352335
                10.2147/NSS.S352335
                9124490
                b886a137-d48b-4398-bb0c-929204764827
                © 2022 Benedetti et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 06 December 2021
                : 27 February 2022
                Page count
                Figures: 6, Tables: 14, References: 61, Pages: 16
                Funding
                Funded by: Arpa Foundation;
                Funded by: RC 1.21 Italian Ministry of Health;
                UF was funded by Arpa Foundation ( https://fondazionearpa.it/ ) and by Grant RC 1.21 Italian Ministry of Health.
                Categories
                Original Research

                obstructive sleep apnoea syndrome,screening,wearable devices,wrist-worn smartbands,artificial intelligence

                Comments

                Comment on this article