53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure∶function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform specificity.

          Enhanced version

          This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a Web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

          Author Summary

          Cyclophilins are proteins that catalyze the isomerization of prolines, interconverting this structurally important amino acid between cis and trans isomers. Although there are 17 cyclophilins in the human genome, the function of most cyclophilin isoforms is unknown. At least some members of this protein family are of interest for clinically relevant drug design, as they are targets of the drug cyclosporin, which is used as an immunosuppressant to treat patients following organ transplantation. The absence of a comprehensive picture of the similarities and differences between the different members of this protein family precludes effective and specific drug design, however. In the current study we undertake such a global structure∶function analysis. Using biochemical, structural, and computational methods we characterize the human cyclophilin family in detail and suggest that there is a previously overlooked region of these enzymes that contributes significantly to isoform diversity. We propose that this region may represent an important target for isoform-specific drug design.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Improved methods for building protein models in electron density maps and the location of errors in these models.

          Map interpretation remains a critical step in solving the structure of a macromolecule. Errors introduced at this early stage may persist throughout crystallographic refinement and result in an incorrect structure. The normally quoted crystallographic residual is often a poor description for the quality of the model. Strategies and tools are described that help to alleviate this problem. These simplify the model-building process, quantify the goodness of fit of the model on a per-residue basis and locate possible errors in peptide and side-chain conformations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein folding in the cell.

            In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A graphical user interface to the CCP4 program suite.

              CCP4i is a graphical user interface that makes running programs from the CCP4 suite simpler and quicker. It is particularly directed at inexperienced users and tightly linked to introductory and scientific documentation. It also provides a simple project-management system and visualization tools. The system is readily extensible and not specific to CCP4 software.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                July 2010
                July 2010
                27 July 2010
                : 8
                : 7
                : e1000439
                Affiliations
                [1 ]Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
                [2 ]Department of Physiology, University of Toronto, Toronto, Ontario, Canada
                [3 ]University of Oxford, Headington, United Kingdom
                [4 ]Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, Colorado, United States of America
                Brandeis University, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: TLD EZE SDP. Performed the experiments: TLD JRW VCS PJFJ RP GB FM WT HO. Analyzed the data: TLD VCS PJFJ EZE SDP. Contributed reagents/materials/analysis tools: TLD SDP. Wrote the paper: TLD WHL EZE SDP. Assisted in editing the manuscript: JRW VCS PJF WT EZE. Designed and prepared the ICM electronic manuscript: WHL.

                [¤]

                Current address: Molecular, Cell & Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States of America.

                Article
                09-PLBI-RA-4229R3
                10.1371/journal.pbio.1000439
                2911226
                20676357
                b88ee3d7-4e30-4d12-bcea-b688f0ef56b1
                Davis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 September 2009
                : 16 June 2010
                Page count
                Pages: 16
                Categories
                Research Article
                Biochemistry
                Biochemistry/Structural Genomics
                Biophysics
                Biophysics/Biomacromolecule-Ligand Interactions
                Biophysics/Structural Genomics

                Life sciences
                Life sciences

                Comments

                Comment on this article