Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Coronary Artery Calcification, Systemic Inflammation Markers and Mineral Metabolism in a Peritoneal Dialysis Population

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims: To assess the prevalence of coronary artery calcification (CAC) in peritoneal dialysis (PD) patients and to determine whether comorbidities such as inflammation, dyslipidemia and mineral metabolism disorders correlate with its development. Methods: Forty-nine PD patients (45% male; median age, 52 years) were submitted to multislice computed tomography. Inflammatory markers, anti-oxidized LDL antibody, calcium–phosphate balance and lipid profiles were assessed. Results: Twenty-nine patients (59.2%) presented CAC (median calcium score, 234.7 Agatston units). Patients with CAC were older than those without, more frequently presented a history of coronary artery disease or hypertension and had lower HDL cholesterol levels, as well as presenting higher levels of osteoprotegerin and LDL oxidation. The logistic regression revealed that the independent determinants of CAC were age (odds ratio = 1.12; p = 0.006) and number of prescribed anti-hypertensive drugs (odds ratio = 2.38; p = 0.048). When the population was stratified by calcium score quartile, soluble Fas levels were significantly higher in patients with severe calcification. In patients younger than 45, CAC correlated positively with phosphorus levels (r = 0.52; p = 0.04). Conclusion: In PD patients, CAC is highly prevalent. Our results indicate that conditions such as inflammation and mineral disturbances are associated with its development.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure.

          Atherosclerotic cardiovascular disease and malnutrition are widely recognized as leading causes of the increased morbidity and mortality observed in uremic patients. C-reactive protein (CRP), an acute-phase protein, is a predictor of cardiovascular mortality in nonrenal patient populations. In chronic renal failure (CRF), the prevalence of an acute-phase response has been associated with an increased mortality. One hundred and nine predialysis patients (age 52 +/- 1 years) with terminal CRF (glomerular filtration rate 7 +/- 1 ml/min) were studied. By using noninvasive B-mode ultrasonography, the cross-sectional carotid intima-media area was calculated, and the presence or absence of carotid plaques was determined. Nutritional status was assessed by subjective global assessment (SGA), dual-energy x-ray absorptiometry (DXA), serum albumin, serum creatinine, serum urea, and 24-hour urine urea excretion. The presence of an inflammatory reaction was assessed by CRP, fibrinogen (N = 46), and tumor necrosis factor-alpha (TNF-alpha; N = 87). Lipid parameters, including Lp(a) and apo(a)-isoforms, as well as markers of oxidative stress (autoantibodies against oxidized low-density lipoprotein and vitamin E), were also determined. Compared with healthy controls, CRF patients had an increased mean carotid intima-media area (18.3 +/- 0.6 vs. 13.2 +/- 0.7 mm2, P or = 10 mg/liter). Malnourished patients had higher CRP levels (23 +/- 3 vs. 13 +/- 2 mg/liter, P < 0.01), elevated calculated intima-media area (20.2 +/- 0.8 vs. 16.9 +/- 0.7 mm2, P < 0.01) and a higher prevalence of carotid plaques (90 vs. 60%, P < 0.0001) compared with well-nourished patients. During stepwise multivariate analysis adjusting for age and gender, vitamin E (P < 0.05) and CRP (P < 0.05) remained associated with an increased intima-media area. The presence of carotid plaques was significantly associated with age (P < 0.001), log oxidized low-density lipoprotein (oxLDL; P < 0.01), and small apo(a) isoform size (P < 0.05) in a multivariate logistic regression model. These results indicate that the rapidly developing atherosclerosis in advanced CRF appears to be caused by a synergism of different mechanisms, such as malnutrition, inflammation, oxidative stress, and genetic components. Apart from classic risk factors, low vitamin E levels and elevated CRP levels are associated with an increased intima-media area, whereas small molecular weight apo(a) isoforms and increased levels of oxLDL are associated with the presence of carotid plaques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia.

            Cardiovascular disease is the leading cause of mortality in uremic patients. In large cross-sectional studies of dialysis patients, traditional cardiovascular risk factors such as hypertension and hypercholesterolemia have been found to have low predictive power, while markers of inflammation and malnutrition are highly correlated with cardiovascular mortality. However, the pathophysiology of the disease process that links uremia, inflammation, and malnutrition with increased cardiovascular complications is not well understood. We hereby propose the hypothesis that increased oxidative stress and its sequalae is a major contributor to increased atherosclerosis and cardiovascular morbidity and mortality found in uremia. This hypothesis is based on studies that conclusively demonstrate an increased oxidative burden in uremic patients, before and particularly after renal replacement therapies, as evidenced by higher concentrations of multiple biomarkers of oxidative stress. This hypothesis also provides a framework to explain the link that activated phagocytes provide between oxidative stress and inflammation (from infectious and non-infections causes) and the synergistic role that malnutrition (as reflected by low concentrations of albumin and/or antioxidants) contributes to the increased burden of cardiovascular disease in uremia. We further propose that retained uremic solutes such as beta-2 microglobulin, advanced glycosylated end products (AGE), cysteine, and homocysteine, which are substrates for oxidative injury, further contribute to the pro-atherogenic milieu of uremia. Dialytic therapy, which acts to reduce the concentration of oxidized substrates, improves the redox balance. However, processes related to dialytic therapy, such as the prolonged use of catheters for vascular access and the use of bioincompatible dialysis membranes, can contribute to a pro-inflammatory and pro-oxidative state and thus to a pro-atherogenic state. Anti-oxidative therapeutic strategies for patients with uremia are in their very early stages; nonetheless, early studies demonstrate the potential for significant efficacy in reducing cardiovascular complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients.

              The purpose of this study was to assess the value of electron beam computed tomography in the detection of cardiac calcifications in coronaries and valves of dialysis patients and to determine the rate at which calcification progresses. Forty-nine chronic hemodialysis patients aged 28 to 74 years were compared with 102 non-dialysis patients aged 32 to 73 years with documented or suspected coronary artery disease, all of whom underwent coronary angiography. We used high-resolution electron beam computed tomography scanning to make 30 axial slices with a distance of 3 mm between each slice. The number of calcifications, the surface area, and the average and highest density values were measured. We calculated a quantitative coronary artery calcium score and assessed calcification of mitral and aortic valves. In dialysis patients, the measurements were repeated after 12 months. The coronary artery calcium score was from 2.5-fold to fivefold higher in the dialysis patients than in the non-dialysis patients. Hypertensive dialysis patients had higher calcium scores than non-hypertensive dialysis patients (P < 0.05). A stepwise, multiple regression analysis confirmed the importance of age and hypertension. No correlation between calcium, phosphate, or parathyroid hormone values and the coronary calcium score was identified; however, the calcium score was inversely correlated with bone mass in the dialysis patients (r = 0.47, P < 0.05). The mitral valve was calcified in 59% of dialysis patients, while the aortic valve was calcified in 55%. The coronary artery calcium score was correlated with aortic valvular, but not mitral valvular calcification. A repeat examination of the dialysis patients at an interval of 1 year showed a disturbing tendency for progression. Our data under-score the frequency and severity of coronary and valvular calcifications in dialysis patients, and illustrate the rapid progression of this calcification. Finally, they draw attention to hypertension as an important risk factor in this process.
                Bookmark

                Author and article information

                Journal
                NEC
                Nephron Clin Pract
                10.1159/issn.1660-2110
                Nephron Clinical Practice
                S. Karger AG
                1660-2110
                2006
                August 2006
                26 May 2006
                : 104
                : 1
                : c33-c40
                Affiliations
                Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
                Article
                93257 Nephron Clin Pract 2006;104:c33–c40
                10.1159/000093257
                16685142
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Tables: 4, References: 39, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/93257
                Categories
                Original Paper

                Comments

                Comment on this article