15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential proinflammatory effects of hydroxyapatite nanoparticles on endothelial cells in a monocyte–endothelial cell coculture model

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently, synthetic hydroxyapatite nanoparticles (HANPs) are used in nanomedicine fields. The delivery of nanomedicine to the bloodstream exposes the cardiovascular system to a potential threat. However, the possible adverse cardiovascular effects of HANPs remain unclear. Current observations using coculture models of endothelial cells and monocytes with HANPs to mimic the complex physiological functionality of the vascular system demonstrate that monocytes could play an important role in the mechanisms of endothelium dysfunction induced by the exposure to HANPs. Our transmission electron microscopy analysis revealed that both monocytes and endothelial cells could take up HANPs. Moreover, our findings demonstrated that at a subcytotoxic dose, HANPs alone did not cause direct endothelial cell injury, but they did induce an indirect activation of endothelial cells, resulting in increased interleukin-6 production and elevated adhesion molecule expression after coculture with monocytes. The potential proinflammatory effect of HANPs is largely mediated by the release of soluble factors from the activated monocytes, leading to an inflammatory response of the endothelium, which is possibly dependent on p38/c-Jun N-terminal kinase, and nuclear factor-kappa B signaling activation. The use of in vitro monocyte–endothelial cell coculture models for the biocompatibility assessment of HANPs could reveal their potential proinflammatory effects on endothelial cells, suggesting that exposure to HANPs possibly increases the risk of cardiovascular disease.

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          MAP kinases in the immune response.

          MAP kinases are among the most ancient signal transduction pathways and are widely used throughout evolution in many physiological processes. In mammalian species, MAP kinases are involved in all aspects of immune responses, from the initiation phase of innate immunity, to activation of adaptive immunity, and to cell death when immune function is complete. In this review, we summarize recent progress in understanding the function and regulation of MAP kinase pathways in these phases of immune responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers.

            Transcription of endothelial-leukocyte adhesion molecule-1 (E-selectin or ELAM-1), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) is induced by the inflammatory cytokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF alpha). The positive regulatory domains required for maximal levels of cytokine induction have been defined in the promoters of all three genes. DNA binding studies reveal a requirement for nuclear factor-kappa B (NF-kappa B) and a small group of other transcriptional activators. The organization of the cytokine-inducible element in the E-selectin promoter is remarkably similar to that of the virus-inducible promoter of the human interferon-beta gene in that both promoters require NF-kappa B, activating transcription factor-2 (ATF-2), and high mobility group protein I(Y) for induction. Based on this structural similarity, a model has been proposed for the cytokine-induced E-selectin enhancer that is similar to the stereospecific complex proposed for the interferon-beta gene promoter. In these models, multiple DNA bending proteins facilitate the assembly of higher order complexes of transcriptional activators that interact as a unit with the basal transcriptional machinery. The assembly of unique enhancer complexes from similar sets of transcriptional factors may provide the specificity required to regulate complex patterns of gene expression and correlate with the distinct patterns of expression of the leukocyte adhesion molecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monocyte-endothelial cell interactions in the development of atherosclerosis.

              The activation of endothelial cells at atherosclerotic lesion-prone sites in the arterial tree results in the up-regulation of cell adhesion molecules and chemokines, which mediate the recruitment of circulating monocytes. Accumulation of monocytes and monocyte-derived phagocytes in the wall of large arteries leads to chronic inflammation and the development and progression of atherosclerosis. This review discusses the nature of these molecules and the mechanisms involved in the early steps of monocyte recruitment into atherosclerotic lesion sites within the vessel wall.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2014
                11 March 2014
                : 9
                : 1261-1273
                Affiliations
                Shanghai Biomaterials Research and Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
                Author notes
                Correspondence: Jiao Sun, No 427, Ju-men Road, Shanghai 200023, People’s Republic of China, Tel +86 216 303 4903, Fax +86 216 301 1643, Email jiaosun59@ 123456yahoo.com
                Article
                ijn-9-1261
                10.2147/IJN.S56298
                3956627
                24648726
                b8a7a1d6-a199-4449-9025-893be76b41de
                © 2014 Liu and Sun. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                coculture,monocytes,endothelial cells,inflammation,hydroxyapatite nanoparticles
                Molecular medicine
                coculture, monocytes, endothelial cells, inflammation, hydroxyapatite nanoparticles

                Comments

                Comment on this article