38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Viral Nanoparticle with Dual Function as an Anthrax Antitoxin and Vaccine

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent use of Bacillus anthracis as a bioweapon has stimulated the search for novel antitoxins and vaccines that act rapidly and with minimal adverse effects. B. anthracis produces an AB-type toxin composed of the receptor-binding moiety protective antigen (PA) and the enzymatic moieties edema factor and lethal factor. PA is a key target for both antitoxin and vaccine development. We used the icosahedral insect virus Flock House virus as a platform to display 180 copies of the high affinity, PA-binding von Willebrand A domain of the ANTXR2 cellular receptor. The chimeric virus-like particles (VLPs) correctly displayed the receptor von Willebrand A domain on their surface and inhibited lethal toxin action in in vitro and in vivo models of anthrax intoxication. Moreover, VLPs complexed with PA elicited a potent toxin-neutralizing antibody response that protected rats from anthrax lethal toxin challenge after a single immunization without adjuvant. This recombinant VLP platform represents a novel and highly effective, dually-acting reagent for treatment and protection against anthrax.

          Author Summary

          Anthrax is caused by the spore-forming, Gram-positive bacterium Bacillus anthracis. The toxic effects of B. anthracis are predominantly due to an AB-type toxin made up of the receptor-binding subunit protective antigen (PA) and two enzymatic subunits called lethal factor and edema factor. Protective immunity to B. anthracis infection is conferred by antibodies against PA, which is the primary component of the current anthrax vaccine. Although the vaccine is safe and effective, it requires multiple injections followed by annual boosters. The development of a well-characterized vaccine that induces immunity after a single injection is an important goal. We developed a reagent that combines the functions of an anthrax antitoxin and vaccine in a single compound. It is based on multivalent display of the anthrax toxin receptor, ANTXR2, on the surface of an insect virus. We demonstrate that the recombinant virus-like particles protect rats from anthrax intoxication and that they induce a potent immune response against lethal toxin when coated with PA. This immune response protected animals against lethal toxin challenge after a single administration without adjuvant. The PA-coated particles have significant advantages as an immunogen compared to monomeric PA and form the basis for development of an improved anthrax vaccine.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Improved methods for building protein models in electron density maps and the location of errors in these models.

          Map interpretation remains a critical step in solving the structure of a macromolecule. Errors introduced at this early stage may persist throughout crystallographic refinement and result in an incorrect structure. The normally quoted crystallographic residual is often a poor description for the quality of the model. Strategies and tools are described that help to alleviate this problem. These simplify the model-building process, quantify the goodness of fit of the model on a per-residue basis and locate possible errors in peptide and side-chain conformations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor.

            Anthrax lethal toxin, produced by the bacterium Bacillus anthracis, is the major cause of death in animals infected with anthrax. One component of this toxin, lethal factor (LF), is suspected to be a metalloprotease, but no physiological substrates have been identified. Here it is shown that LF is a protease that cleaves the amino terminus of mitogen-activated protein kinase kinases 1 and 2 (MAPKK1 and MAPKK2) and that this cleavage inactivates MAPKK1 and inhibits the MAPK signal transduction pathway. The identification of a cleavage site for LF may facilitate the development of LF inhibitors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of the cellular receptor for anthrax toxin.

              The tripartite toxin secreted by Bacillus anthracis, the causative agent of anthrax, helps the bacterium evade the immune system and can kill the host during a systemic infection. Two components of the toxin enzymatically modify substrates within the cytosol of mammalian cells: oedema factor (OF) is an adenylate cyclase that impairs host defences through a variety of mechanisms including inhibiting phagocytosis; lethal factor (LF) is a zinc-dependent protease that cleaves mitogen-activated protein kinase kinase and causes lysis of macrophages. Protective antigen (PA), the third component, binds to a cellular receptor and mediates delivery of the enzymatic components to the cytosol. Here we describe the cloning of the human PA receptor using a genetic complementation approach. The receptor, termed ATR (anthrax toxin receptor), is a type I membrane protein with an extracellular von Willebrand factor A domain that binds directly to PA. In addition, a soluble version of this domain can protect cells from the action of the toxin.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2007
                5 October 2007
                : 3
                : 10
                : e142
                Affiliations
                [1 ] Department of Molecular Biology, The Scripps Research Institute, La Jolla, California , United States of America
                [2 ] Department of Cell Biology, The Scripps Research Institute, La Jolla, California , United States of America
                [3 ] The Salk Institute for Biological Studies, La Jolla, California, United States of America
                [4 ] Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, California, United States of America
                Washington University School of Medicine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: aschneem@ 123456scripps.edu
                Article
                07-PLPA-RA-0044R3 plpa-03-10-03
                10.1371/journal.ppat.0030142
                2000967
                17922572
                b8abd937-5add-4235-aca9-5a95dd2c5693
                Copyright: © 2007 Manayani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 January 2007
                : 13 August 2007
                Page count
                Pages: 10
                Categories
                Research Article
                Biotechnology
                Molecular Biology
                Virology
                Viruses
                Insects
                None
                Custom metadata
                Manayani DJ, Thomas D, Dryden KA, Reddy V, Siladi ME, et al. (2007) A viral nanoparticle with dual function as an anthrax antitoxin and vaccine. PLoS Pathog 3(10): e142. doi: 10.1371/journal.ppat.0030142

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article