33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Repeated Parallel Evolution of Parental Care Strategies within Xenotilapia, a Genus of Cichlid Fishes from Lake Tanganyika

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The factors promoting the evolution of parental care strategies have been extensively studied in experiment and theory. However, most attempts to examine parental care in an evolutionary context have evaluated broad taxonomic categories. The explosive and recent diversifications of East African cichlid fishes offer exceptional opportunities to study the evolution of various life history traits based on species-level phylogenies. The Xenotilapia lineage within the endemic Lake Tanganyika cichlid tribe Ectodini comprises species that display either biparental or maternal only brood care and hence offers a unique opportunity to study the evolution of distinct parental care strategies in a phylogenetic framework. In order to reconstruct the evolutionary relationships among 16 species of this lineage we scored 2,478 Amplified Fragment Length Polymorphisms (AFLPs) across the genome. We find that the Ectodini genus Enantiopus is embedded within the genus Xenotilapia and that during 2.5 to 3 million years of evolution within the Xenotilapia clade there have been 3–5 transitions from maternal only to biparental care. While most previous models suggest that uniparental care (maternal or paternal) arose from biparental care, we conclude from our species-level analysis that the evolution of parental care strategies is not only remarkably fast, but much more labile than previously expected.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          AFLP: a new technique for DNA fingerprinting.

          A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.

            Major phenotypic changes evolve in parallel in nature by molecular mechanisms that are largely unknown. Here, we use positional cloning methods to identify the major chromosome locus controlling armor plate patterning in wild threespine sticklebacks. Mapping, sequencing, and transgenic studies show that the Ectodysplasin (EDA) signaling pathway plays a key role in evolutionary change in natural populations and that parallel evolution of stickleback low-plated phenotypes at most freshwater locations around the world has occurred by repeated selection of Eda alleles derived from an ancestral low-plated haplotype that first appeared more than two million years ago. Members of this clade of low-plated alleles are present at low frequencies in marine fish, which suggests that standing genetic variation can provide a molecular basis for rapid, parallel evolution of dramatic phenotypic change in nature.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              The Evolution of Parental Care

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                8 February 2012
                : 7
                : 2
                : e31236
                Affiliations
                [1 ]The University of Texas at Austin, Section of Integrative Biology, Institute for Neuroscience, Austin, Texas, United States of America
                [2 ]Texas A&M International University, Department of Biology & Chemistry, Laredo, Texas, United States of America
                [3 ]University of Graz, Department of Zoology, Graz, Austria
                [4 ]The University of Texas at Austin, Institute for Cellular and Molecular Biology, Austin, Texas, United States of America
                Biodiversity Insitute of Ontario - University of Guelph, Canada
                Author notes

                Conceived and designed the experiments: MRK ND. Performed the experiments: MRK. Analyzed the data: MRK HAH SK. Contributed reagents/materials/analysis tools: HAH ND SK CS. Wrote the paper: MRK HAH SK.

                Article
                PONE-D-11-18811
                10.1371/journal.pone.0031236
                3275620
                22347454
                b8acadaf-99ab-43a6-9f6b-fafae792e148
                Kidd et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 September 2011
                : 4 January 2012
                Page count
                Pages: 8
                Categories
                Research Article
                Agriculture
                Animal Management
                Biology
                Ecology
                Evolutionary Biology
                Evolutionary Systematics
                Zoology
                Veterinary Science
                Animal Management

                Uncategorized
                Uncategorized

                Comments

                Comment on this article