70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates

      research-article
      1 , , 1 ,
      Biotechnology for Biofuels
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems.

          Information pertaining to enzymatic hydrolysis of cellulose by noncomplexed cellulase enzyme systems is reviewed with a particular emphasis on development of aggregated understanding incorporating substrate features in addition to concentration and multiple cellulase components. Topics considered include properties of cellulose, adsorption, cellulose hydrolysis, and quantitative models. A classification scheme is proposed for quantitative models for enzymatic hydrolysis of cellulose based on the number of solubilizing activities and substrate state variables included. We suggest that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis, and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject. 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How biotech can transform biofuels.

            For cellulosic ethanol to become a reality, biotechnological solutions should focus on optimizing the conversion of biomass to sugars.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Substrate and Enzyme Characteristics that Limit Cellulose Hydrolysis.

              The ability and, consequently, the limitations of various microbial enzyme systems to completely hydrolyze the structural polysaccharides of plant cell walls has been the focus of an enormous amount of research over the years. As more and more of these extracellular enzymatic systems are being identified and characterized, clear similarities and differences are being elucidated. Although much has been learned concerning the structures, kinetics, catalytic action, and interactions of enzymes and their substrates, no single mechanism of total lignocellulosic saccharification has been established. The heterogeneous nature of the supramolecular structures of naturally occurring lignocellulosic matrices make it difficult to fully understand the interactions that occur between enzyme complexes and these substrates. However, it is apparent that the efficacy of enzymatic complexes to hydrolyze these substrates is inextricably linked to the innate structural characteristics of the substrate and/or the modifications that occur as saccharification proceeds. This present review is not intended to conclusively answer what factors control polysaccharide biodegradation, but to serve as an overview illustrating some of the potential enzymatic and structural limitations that invariably influence the complete hydrolysis of lignocellulosic polysaccharides.
                Bookmark

                Author and article information

                Journal
                Biotechnol Biofuels
                Biotechnology for Biofuels
                BioMed Central
                1754-6834
                2011
                10 February 2011
                : 4
                : 3
                Affiliations
                [1 ]Forestry Products Biotechnology/Bioenergy Group, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC, V6T 1Z4, Canada
                Article
                1754-6834-4-3
                10.1186/1754-6834-4-3
                3042927
                21310050
                b8ad375d-a521-4dc3-ac0c-06ea2b135582
                Copyright ©2011 Arantes and Saddler; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 August 2010
                : 10 February 2011
                Categories
                Research

                Biotechnology
                Biotechnology

                Comments

                Comment on this article