45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Response of Plant Secondary Metabolites to Environmental Factors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant secondary metabolites (SMs) are not only a useful array of natural products but also an important part of plant defense system against pathogenic attacks and environmental stresses. With remarkable biological activities, plant SMs are increasingly used as medicine ingredients and food additives for therapeutic, aromatic and culinary purposes. Various genetic, ontogenic, morphogenetic and environmental factors can influence the biosynthesis and accumulation of SMs. According to the literature reports, for example, SMs accumulation is strongly dependent on a variety of environmental factors such as light, temperature, soil water, soil fertility and salinity, and for most plants, a change in an individual factor may alter the content of SMs even if other factors remain constant. Here, we review with emphasis how each of single factors to affect the accumulation of plant secondary metabolites, and conduct a comparative analysis of relevant natural products in the stressed and unstressed plants. Expectantly, this documentary review will outline a general picture of environmental factors responsible for fluctuation in plant SMs, provide a practical way to obtain consistent quality and high quantity of bioactive compounds in vegetation, and present some suggestions for future research and development.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacology of Curcuma longa.

          The data reviewed indicate that extracts of Curcuma longa exhibit anti-inflammatory activity after parenteral application in standard animal models used for testing anti-inflammatory activity. It turned out that curcumin and the volatile oil are at least in part responsible for this action. It appears that when given orally, curcumin is far less active than after i.p. administration. This may be due to poor absorption, as discussed. Data on histamine-induced ulcers are controversial, and studies on the secretory activity (HCl, pepsinogen) are still lacking. In vitro, curcumin exhibited antispasmodic activity. Since there was a protective effect of extracts of Curcuma longa on the liver and a stimulation of bile secretion in animals, Curcuma longa has been advocated for use in liver disorders. Evidence for an effect on liver disease in humans is not yet available. From the facts that after oral application only traces of curcumin were found in the blood and that, on the other hand, most of the curcumin is excreted via the faeces it may be concluded that curcumin is absorbed poorly by the gastrointestinal tract and/or underlies presystemic transformation. Systemic effects therefore seem to be questionable after oral application except that they occur at very low concentrations of curcumin. This does not exclude a local action in the gastrointestinal tract.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Production of plant secondary metabolites: a historical perspective

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Light-controlled flavonoid biosynthesis in fruits

              Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                27 March 2018
                April 2018
                : 23
                : 4
                : 762
                Affiliations
                Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; yangli0817@ 123456yeah.net (L.Y.); kuishanwen@ 123456zju.edu.cn (K.-S.W.); ruanxiao@ 123456nit.net.cn (X.R.); zyx@ 123456nit.net.cn (Y.-X.Z.); weifeng@ 123456nit.net.cn (F.W.)
                Author notes
                [* ]Correspondence: wangqiangsky@ 123456263.net ; Tel.: +86-137-7713-5491
                Author information
                https://orcid.org/0000-0002-5122-8318
                Article
                molecules-23-00762
                10.3390/molecules23040762
                6017249
                29584636
                b8b41956-6123-4e12-a696-67cdd980741a
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 February 2018
                : 23 March 2018
                Categories
                Review

                plant secondary metabolites,phenolics,flavonoids,terpenoids,alkaloids,responses,environmental factors,light irradiation,temperature,soil water,soil fertility and salinity

                Comments

                Comment on this article