9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and Validation of 58K SNP-Array and High-Density Linkage Map in Nile Tilapia ( O. niloticus)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite being the second most important aquaculture species in the world accounting for 7.4% of global production in 2015, tilapia aquaculture has lacked genomic tools like SNP-arrays and high-density linkage maps to improve selection accuracy and accelerate genetic progress. In this paper, we describe the development of a genotyping array containing more than 58,000 SNPs for Nile tilapia ( Oreochromis niloticus). SNPs were identified from whole genome resequencing of 32 individuals from the commercial population of the Genomar strain, and were selected for the SNP-array based on polymorphic information content and physical distribution across the genome using the Orenil1.1 genome assembly as reference sequence. SNP-performance was evaluated by genotyping 4991 individuals, including 689 offspring belonging to 41 full-sib families, which revealed high-quality genotype data for 43,588 SNPs. A preliminary genetic linkage map was constructed using Lepmap2 which in turn was integrated with information from the O_niloticus_UMD1 genome assembly to produce an integrated physical and genetic linkage map comprising 40,186 SNPs distributed across 22 linkage groups (LGs). Around one-third of the LGs showed a different recombination rate between sexes, with the female being greater than the male map by a factor of 1.2 (1632.9 to 1359.6 cM, respectively), with most LGs displaying a sigmoid recombination profile. Finally, the sex-determining locus was mapped to position 40.53 cM on LG23, in the vicinity of the anti-Müllerian hormone (amh) gene. These new resources has the potential to greatly influence and improve the genetic gain when applying genomic selection and surpass the difficulties of efficient selection for invasively measured traits in Nile tilapia.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus

          Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh) gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh) except a missense SNP (C/T) which changes an amino acid (Ser/Leu92) in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah) onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII) in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Haplotype-based variant detection from short-read sequencing

            The direct detection of haplotypes from short-read DNA sequencing data requires changes to existing small-variant detection methods. Here, we develop a Bayesian statistical framework which is capable of modeling multiallelic loci in sets of individuals with non-uniform copy number. We then describe our implementation of this framework in a haplotype-based variant detector, FreeBayes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An evolutionary view of human recombination.

              Recombination has essential functions in mammalian meiosis, which impose several constraints on the recombination process. However, recent studies have shown that, in spite of these roles, recombination rates vary tremendously among humans, and show marked differences between humans and closely related species. These findings provide important insights into the determinants of recombination rates and raise new questions about the selective pressures that affect recombination over different genomic scales, with implications for human genetics and evolutionary biology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                15 October 2018
                2018
                : 9
                : 472
                Affiliations
                [1] 1Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences , Ås, Norway
                [2] 2Genomar Genetics AS , Trondheim, Norway
                Author notes

                Edited by: Ross Houston, University of Edinburgh, United Kingdom

                Reviewed by: José Manuel Yáñez, Universidad de Chile, Chile; Costas S. Tsigenopoulos, Hellenic Centre for Marine Research, Greece

                *Correspondence: Rajesh Joshi, rajesh.joshi@ 123456nmbu.no

                These authors have contributed equally to this work

                This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2018.00472
                6196754
                30374365
                b8bc5a80-79d8-4a0e-a82b-d28149eb1faf
                Copyright © 2018 Joshi, Árnyasi, Lien, Gjøen, Alvarez and Kent.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 May 2018
                : 24 September 2018
                Page count
                Figures: 4, Tables: 4, Equations: 0, References: 82, Pages: 15, Words: 0
                Categories
                Genetics
                Original Research

                Genetics
                nile tilapia,linkage map,snp array,genomics,sex determination,amh,anti-müllerian hormone
                Genetics
                nile tilapia, linkage map, snp array, genomics, sex determination, amh, anti-müllerian hormone

                Comments

                Comment on this article